true
The answer depends on which area is shaded for each inequality. I always teach pupils to shade the unwanted or non-feasible region. That way the solution is in the unshaded area. This is much easier to identify than do distinguish between a region which is shaded three times and another which is shaded four times.
Given an inequality, you need to decide whether you are required to shade the region in it is TRUE or FALSE. If you are given several inequalities, you would usually be required to shade the regions where they are false because shading is additive [shading + shading = shading] and you will be left with the unshaded region where all the inequalities are true.Next, select any point which is not of the line or curve for the inequality. Plug its coordinates into the inequality: it the result FALSE? If so, shade the region (relative to the line or curve) in which the point is found. If substituting the coordinates gives an inequality which is TRUE then shade the regions which is the other side of the line or curve.
overlap
true
It is divided into three regions.
True
The answer depends on which area is shaded for each inequality. I always teach pupils to shade the unwanted or non-feasible region. That way the solution is in the unshaded area. This is much easier to identify than do distinguish between a region which is shaded three times and another which is shaded four times.
Given an inequality, you need to decide whether you are required to shade the region in it is TRUE or FALSE. If you are given several inequalities, you would usually be required to shade the regions where they are false because shading is additive [shading + shading = shading] and you will be left with the unshaded region where all the inequalities are true.Next, select any point which is not of the line or curve for the inequality. Plug its coordinates into the inequality: it the result FALSE? If so, shade the region (relative to the line or curve) in which the point is found. If substituting the coordinates gives an inequality which is TRUE then shade the regions which is the other side of the line or curve.
overlap
true
Asia is divided into 5 regions.
The pharynx is divided into three regions: nasopharynx, oropharynx, and laryngopharynx.
France is divided into 22 regions (plus four more oversea regions). Most of these regions are themselves divided into smaller administrative areas, the 'départements'
Japan is divided into regions and further subdivided into prefectures.
It is a huge country, naturally it will be divided into physical regions.
Yes. It is divided into 5 regions.
Which region you shade depends on whether you are required to shade the possible values or the values that need t be rejected. In 2 or more dimensions, you would normally shade the regions to be rejected - values that are not solutions. With a set of inequalities, this will result in an unshaded region (if any) any point of which will satisfy all the equations.If the inequality is written in the form x < N where N is some given value, then the possible solutions are to the left of N and the rejected values are to the right. Whether the value N, itself, is shaded or not depends on whether the inequality is strict or not.