The sacle factor between two shapes is the same as the ratio of their perimeters.
They are the same.
Assume square A with side a; square B with side b. Perimeter of A is 4a; area of A is a2. Perimeter of B is 4b; area of B is b2. Given the ratio of the perimeters equals the ratio of the areas, then 4a/4b = a2/b2; a/b = a2/b2 By cross-multiplication we get: ab2 = a2b Dividing both sides by ab we get: b = a This tells us that squares whose ratio of their perimeters equals the ratio of their areas have equal-length sides. (Side a of Square A = side b of Square B.) This appears to show, if not prove, that there are not two different-size squares meeting the condition.
5:3
IF triangles 'A' and 'B' are similar (they both have the same angles),then the perimeter of 'B' is 8 times the perimeter of 'A'.If they're not similar, then the ratio of areas doesn't tell you the ratioof perimeters.
If lengths are in the ratio a:b, then areas are in the ratio a2:b2 since area is length x length. If areas are in the ratio c:d, then lengths are in the ration sqrt(c):sqrt(d). Areas of decagons are 625sq ft and 100 sq ft, they are in the ratio of 625:100 = 25:4 (dividing through by 25 as ratios are usually given in the smallest terms). Thus their lengths are in the ratio of sqrt(25):sqrt(4) = 5:2 As perimeter is a length, the perimeters are in the ratio of 5:2.
The ratio of their perimeters will be 3:1, while the ratio of their areas will be 9:1 (i.e. 32:1)
The ratio of their perimeters is also 45/35 = 9/7. The ratio of their areas is (9/7)2 = 81/63
Their perimeters are in the same ratio.
Whatever the ratio of perimeters of the similar figures, the areas will be in the ratios squared. Examples: * if the figures have perimeters in a ratio of 1:2, their areas will have a ratio of 1²:2² = 1:4. * If the figures have perimeters in a ratio of 2:3, their areas will have a ratio of 2²:3² = 4:9.
4.9
The ratio is 16 to 81.
It is 0.6046 : 1 (approx).
is it 3:5 and 3:5
No, in general that is not true. For two similar figures it is true. But you can easily design two different figures that have the same perimeters and different areas, or the same area and different perimeters. For example, two rectangles with a different length-to-width ratio.
The perimeters of two similar polygons have the same ratio as the measure of any pair of corresponding sides. So the ratio of the measure of two corresponding sides of two similar kites with perimeter 21 and 28 respectively, is 21/28 equivalent to 3/4.
The sacle factor between two shapes is the same as the ratio of their perimeters.