What is the 14th term in the arithmetic sequence in which the first is 100 and the common difference is -4? a14= a + 13d = 100 + 13(-4) = 48
16
6
An arithmetic sequence is a sequence of numbers in which the difference between consecutive terms is constant. For example, the sequence 2, 5, 8, 11, 14 has a common difference of 3. Another example is 10, 7, 4, 1, which has a common difference of -3. In general, an arithmetic sequence can be expressed as (a_n = a_1 + (n-1)d), where (a_1) is the first term and (d) is the common difference.
-8
What is the 14th term in the arithmetic sequence in which the first is 100 and the common difference is -4? a14= a + 13d = 100 + 13(-4) = 48
16
It is a + 8d where a is the first term and d is the common difference.
Arithmetic : (First term)(last term)(act of terms)/2 Geometric : (first term)(total terms)+common ratio to the power of (1+2+...+(total terms-1))
The answer is two arithmetic sequences, both with a common difference of 3, alternating with one another, where the second series is greater than the first by the value of 2*A(0), ie twice the starting value.
6
From any term after the first, subtract the preceding term.
For an Arithmetic Progression, Sum = 15[a + 7d].{a = first term and d = common difference} For a Geometric Progression, Sum = a[1-r^15]/(r-1).{r = common ratio }.
An arithmetic sequence is a sequence of numbers in which the difference between consecutive terms is constant. For example, the sequence 2, 5, 8, 11, 14 has a common difference of 3. Another example is 10, 7, 4, 1, which has a common difference of -3. In general, an arithmetic sequence can be expressed as (a_n = a_1 + (n-1)d), where (a_1) is the first term and (d) is the common difference.
6
29
-8