29
The graph will be a set of disjoint points with coordinates [n, 0.5*(1+n)]
An arithmetic sequence is a group or sequence of numbers where, except for the first number, each of the subsequent number is determined by the same rule or set of rules. * * * * * The above answer is incorrect. The rule can only be additive: it cannot be multiplicative or anything else.
35 minus 4 differences, ie 4 x 6 so first term is 11 and progression runs 11,17,23,29,35...
10-2x for x = 0, 1, 2, 3, ... Since the domain of an arithmetic sequence is the set of natural numbers, then the formula for the nth term of the given sequence with the first term 10 and the common difference -2 is an = a1 + (n -1)(-2) = 10 - 2n + 2 = 12 - 2n.
The set of odd numbers is an arithmetic sequence. Let say that the sequence has n odd numbers where the first term is a1 and the last one is n. The formula to find the sum on nth terms for an arithmetic sequence is: Sn = (n/2)(a1 + an) or Sn = (n/2)[2a1 + (n - 1)d] where d is the common difference that for odd numbers is 2. Sn = (n/2)(2a1 + 2n - 2)
What is the 14th term in the arithmetic sequence in which the first is 100 and the common difference is -4? a14= a + 13d = 100 + 13(-4) = 48
16
It is a + 8d where a is the first term and d is the common difference.
6
From any term after the first, subtract the preceding term.
6
A single number, such as 11111, cannot define an arithmetic sequence. On the other hand, it can be the first element of any kind of sequence. On the other hand, if the question was about ``1, 1, 1, 1, 1'' then that is an arithmetic sequence as there is a common difference of 0 between each term.
You subtract any two adjacent numbers in the sequence. For example, in the sequence (1, 4, 7, 10, ...), you can subtract 4 - 1, or 7 - 4, or 10 - 7; in any case you will get 3, which is the common difference.
The sum of the first 12 terms of an arithmetic sequence is: sum = (n/2)(2a + (n - 1)d) = (12/2)(2a + (12 - 1)d) = 6(2a + 11d) = 12a + 66d where a is the first term and d is the common difference.
You take the difference between the second and first numbers.Then take the difference between the third and second numbers. If that difference is not the same then it is not an arithmetic sequence, otherwise it could be.Take the difference between the fourth and third second numbers. If that difference is not the same then it is not an arithmetic sequence, otherwise it could be.Keep checking until you think the differences are all the same.That being the case it is an arithmetic sequence.If you have a position to value rule that is linear then it is an arithmetic sequence.
6
It is an Arithmetic Progression with a constant difference of 11 and first term 15.