It seems that you are referring to specific figures that are not provided in your question. To determine in which figure AB equals AC, I would need to see the figures in question. Please provide additional context or describe the figures for a more accurate response.
To determine WZ using ratios between two similar figures, you can set up the proportion as follows: ( \frac{WZ}{AB} = \frac{WX}{AC} ), where AB and AC are corresponding sides of the two figures. If you know the lengths of AB and AC, you can rearrange the equation to find WZ: ( WZ = \frac{WX \cdot AB}{AC} ). To determine WC, you would need to use a similar proportion involving the sides that relate to WC and the corresponding sides of the figures.
AB + AC + BC = 48 AB + (AB +9) + (AB + 9 + 3) = 48 Solve and AB = 9 So AB = 9, AC = 18 and BC = 21
If line BE is the bisector of segment AC, it means that it divides AC into two equal parts. Given that AB is 7 units, it implies that the length of AC is twice the length of AB. Therefore, AC is 2 × 7 = 14 units.
All the trigonometric functions are derived from the right angled triangle. If we consider the three sides (AB, BC, CA) of a triangle and the included angle. There is a possibility of getting six functions based on the ratios like AB/AC, BC/AC, AB/BC, BC/AB, AC/BC, AC/AB . So we will have six trigonometric functions
If line BE is the bisector of segment AC, it means that BE divides AC into two equal segments. Therefore, if AB is 7, then AC must be twice that length, making AC equal to 14.
If 2 segments have the same length they are known as 'congruent segments' IE: segment AB=segment AC (or AB=AC) then AB @ AC (or AB is congruent to AC)
yes because ab plus bc is ac
C is the midpoint of Ab . then AC = BC. So AC= CB.
.Ab + c cb + a
the midpoint of AB.
AB + AC + BC = 48 AB + (AB +9) + (AB + 9 + 3) = 48 Solve and AB = 9 So AB = 9, AC = 18 and BC = 21
It can be simplified to -c-a-ac
If line BE is the bisector of segment AC, it means that it divides AC into two equal parts. Given that AB is 7 units, it implies that the length of AC is twice the length of AB. Therefore, AC is 2 × 7 = 14 units.
If angle ACB is the right angle then ab is the hypotenuse. Then, (ab)2 = 62 + 92 = 36 + 81 = 117 ab = √117 = 10.8 (3 sf) If angle BAC is the right angle then ab is one leg of a right angled triangle with bc the hypotenuse. 92 = 62 + (ab)2 : (ab)2 = 92 - 62 = 81 - 36 = 45 ab = √45 = 6.71 (3 sf)
All the trigonometric functions are derived from the right angled triangle. If we consider the three sides (AB, BC, CA) of a triangle and the included angle. There is a possibility of getting six functions based on the ratios like AB/AC, BC/AC, AB/BC, BC/AB, AC/BC, AC/AB . So we will have six trigonometric functions
C is not on the line AB.
If AC plus CB equals AB and AC is equal to CB, then point C is the midpoint of segment AB. This means that point C divides the segment AB into two equal parts, making AC equal to CB. Therefore, point C is located exactly halfway between points A and B.