yes because ab plus bc is ac
associative? single replacement
6(ab - ac + b2 - bc)
there will be three vertex AB, BC, AC
Let ABC be a triangle. Let D and E be the mid points of AB and AC respectively. Then the mid-line theorem states that DEBC and DE = BC/2.Extend DE beyond E to F such that DE = EF. Since AE = CE, triangles ADE and CEF are equal, making CFAB (or CFBD, which is the same) because, for the transversal AC, the alternating angles DAE and ECF are equal. Also,CF = AD = BD, such that BDFC is a parallelogram. It follows that BC = DF = 2·DE which is what we set out to prove.Conversely, let D be on AB, E on AC, DEBC and DE = BC/2. Prove that AD = DB and AE = CE.This is because the condition DEBC makes triangles ADE and ABC similar, with implied proportion,AB/AD = AC/AE = BC/DE = 2.It thus follows that AB is twice as long as AD so that D is the midpoint of AB; similarly, E is the midpoint of AC.
a^2 + b^2 + c^2 - ab - bc - ca = 0=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0 => a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 - 2ca + a^2 = 0 => (a - b)^2 + (b - c)^2 + (c - a)^2 = 0 Each term on the left hand side is a square and so it is non-negative. Since their sum is zero, each term must be zero. Therefore: a - b = 0 => a = b b - c = 0 => b = c.
AB plus BC equals AC is an example of the Segment Addition Postulate in geometry. This postulate states that if point B lies on line segment AC, then the sum of the lengths of segments AB and BC is equal to the length of segment AC. It illustrates the relationship between points and segments on a line.
Commutativity.
It would be a straight line of length bc
If point b is in between points a and c, then ab +bc= ac by the segment addition postulate...dont know if that was what you were looking for... but that is how i percieved that qustion.
Do you mean F = abc + abc + ac + bc + abc' ? *x+x = x F = abc + ac + bc + abc' *Rearranging F = abc + abc' + ab + bc *Factoring out ab F = ab(c+c') + ab + bc *x+x' = 1 F = ab + ab + bc *x+x = x F = bc
It could be a vector sum.
36
You could conclude that B lies between A and C.
The answer depends entirely on what AB, BC and AC are. And since you have not bothered to share that crucial bit of information, I cannot provide a more useful answer.
12
5
ac is 7 if b is 3 and a is 2 a nd c is 5