integral sin(3 x) cos(5 x) dx = 1/16 (8 cos^2(x)-cos(8 x))+C
Chat with our AI personalities
Int[sin(2x)*cos(3x)]dx = Int[(2sinx*cosx)*(4cos^3x - 3cosx)]dx= Int[(8sinx*cos^4x - 6sinx*cos^2x)]dx Let cosx = u then du/dx = -sinx So, the integral is Int[-8*u^4 + 6*u^2]du = -8/5*u^5 + 2u^3 + c where c is a constant of integration = -8/5*cos^5x + 2cos^3x + c
sin7x-sin6x+sin5x
32-5x=3x+8 32-5x-8=3x+8-8 24-5x=3x 24-5x+5x=3x+5x 24=8x x=24/8=3
what is |5x-1|+7=3x
5x + 5 = 8 -3x 5x = 3 -3x 8x = 3 x = 0.375