A complex number is x+iy and -6i is 0-6i or 0-i6
I would then answer yes.
The complex conjugate of a+bi is a-bi. This is written as z* where z is a complex number. ex. z = a+bi z* = a-bi r = 3+12i r* = 3-12i s = 5-6i s* = 5+6i t = -3+7i = 7i-3 t* = -3-7i = -(3+7i)
564
16
answer is 7i, since its the same thing as: i + (i + i + i + i + i + i)
(4 + 6i)*(-7) = -28 - 42iAnd just because i = sqrt(-1), I am not something that you can multiply or simplify.
-6i-8
Oh, dude, the complex conjugate of 8 + 6i is just flipping the sign of the imaginary part, so it's 8 - 6i. It's like changing your mood from happy to grumpy, but in the world of math. So yeah, that's the deal with complex conjugates.
2+6i
you must multiply by the conjagate. which is the denominator with the middle sign changed....(5+6i)...conjagate= (5-6i)....
5+6i , -2-2i , 100+i.A complex number consists of a real part and an imaginary part: a+bi where 'i' is the imaginary unit (sq.rt(-1)).
The complex conjugate of a+bi is a-bi. This is written as z* where z is a complex number. ex. z = a+bi z* = a-bi r = 3+12i r* = 3-12i s = 5-6i s* = 5+6i t = -3+7i = 7i-3 t* = -3-7i = -(3+7i)
the problem: what is 4 + 4i + 4 + 6i what you do is add the real and imaginary parts, thus: 4+4 and 4i+6i = 8+10i answer.
Square root of 25 = +or- 5 Square root of -36 = +or- 6i where i is the imaginary number such that i^2=-1 Square root of 121 = +or-11 So the 8 possible answers are: -16-6i, -16+6i, -6-6i, -6+6i, 6-6i, 6+6i, 16-6i and 16+6i
564
There are only three roots given so, in general, there is no unique answer. However, if it is a real polynomial, then its complex roots must come in conjugate pairs. Then 6i is a root implies that -6i is a root. So the polynomial is (x - 4)(x + 3)(x + 6i)(x - 6i) = (x2 - x - 12)(x2 + 36) = x4 + 36x2 - x3 - 36x - 12x2 - 432 = x4 - x3 + 24x2 - 36x - 432
6i which also means 6 as an imaginary number.
how can i unistall developer 6i from my winows7