answersLogoWhite

0


Best Answer

Yes, It is a solution (a+)

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is 2 a solution to the inequality x 3?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the solution to this inequality x-7-5?

-2


How does solving linear inequality differ from solving linear equation?

Linear inequalities are equations, but instead of an equal sign, it has either a greater than, greater than or equal to, less than, or a less than or equal to sign. Both can be graphed. Solving linear equations mainly differs from solving linear inequalities in the form of the solution. 1. Linear equation. For each linear equation in x, there is only one value of x (solution) that makes the equation true. The equation: x - 3 = 7 has one solution, that is x = 10. The equation: 3x + 4 = 13 has one solution that is x = 3. 2. Linear inequality. On the contrary, a linear inequality has an infinity of solutions, meaning there is an infinity of value of x that make the inequality true. All these x values constitute the "solution set" of the inequality. The answers of a linear inequality are expressed in the form of intervals. The linear inequality x + 5 < 9 has as solution: x < 4. The solution set of this inequality is the interval (-infinity, 4) The inequality 4x - 3 > 5 has as solution x > 2. The solution set is the interval (2, +infinity). The intervals can be open, closed, and half closed. The open interval (1, 4) ; the 2 endpoints 1 and 4 are not included in the solution set. The closed interval [-2, 5] ; the 2 end points -2 and 5 are included. The half-closed interval [3, +infinity) ; the end point 3 is included.


How does the solution to an inequality differ from the solution to an equation?

The solution to an inequality generally is a region with one more dimension. If the inequality/equation is of the form x < a or x = a then the solution to the inequality is the 1 dimensional line segment while the solution to the equality is a point which has no dimensions. If the inequality/equation is in 2 dimensions, the solution to the inequality is an area whereas the solution to the equality is a 1-d line or curve. And so on, in higher dimensional spaces.


How do you graph inequalities?

Through signs of inequality Solve each inequality Graph the solution? 2(m-3)+7<21 4(n-2)-6>18 9(x+2)>9(-3)


Is -3.5 is a solution for inequality x-6?

No, because x-6 is an expression: it is not an inequality.

Related questions

Is 3 a solution to the inequality x 3?

No, it is not a solution.


What is the solution to the inequality below 7 3x - 2?

If 7 > 3x - 2 then x < 3.


Solve the inequality and enter your solution as an inequality comparing the variable to the solution -3 plus x10?

Solve the inequality and enter your solution as an inequality comparing the variable to the solution. -33+x<-33


How do you graph an inequality?

Through signs of inequality Solve each inequality Graph the solution? 2(m-3)+7<21 4(n-2)-6>18 9(x+2)>9(-3)


Is 4 a solution of the inequality x 3?

Yes


What is the solution to this inequality x-7-5?

-2


What is a solution of y - x -3?

y - x - 3 is an expression, not an equation nor an inequality. It cannot, therefore, have a solution.


How does solving linear inequality differ from solving linear equation?

Linear inequalities are equations, but instead of an equal sign, it has either a greater than, greater than or equal to, less than, or a less than or equal to sign. Both can be graphed. Solving linear equations mainly differs from solving linear inequalities in the form of the solution. 1. Linear equation. For each linear equation in x, there is only one value of x (solution) that makes the equation true. The equation: x - 3 = 7 has one solution, that is x = 10. The equation: 3x + 4 = 13 has one solution that is x = 3. 2. Linear inequality. On the contrary, a linear inequality has an infinity of solutions, meaning there is an infinity of value of x that make the inequality true. All these x values constitute the "solution set" of the inequality. The answers of a linear inequality are expressed in the form of intervals. The linear inequality x + 5 < 9 has as solution: x < 4. The solution set of this inequality is the interval (-infinity, 4) The inequality 4x - 3 > 5 has as solution x > 2. The solution set is the interval (2, +infinity). The intervals can be open, closed, and half closed. The open interval (1, 4) ; the 2 endpoints 1 and 4 are not included in the solution set. The closed interval [-2, 5] ; the 2 end points -2 and 5 are included. The half-closed interval [3, +infinity) ; the end point 3 is included.


Solution for the inequality x2 - 5x plus 6 0 is?

x2 - 5x + 6 = 0(x - 2) (x - 3) = 0x - 2 = 0 5 × 69 or x - 3 = 0x = 2 or x = 3


How does the solution to an inequality differ from the solution to an equation?

The solution to an inequality generally is a region with one more dimension. If the inequality/equation is of the form x < a or x = a then the solution to the inequality is the 1 dimensional line segment while the solution to the equality is a point which has no dimensions. If the inequality/equation is in 2 dimensions, the solution to the inequality is an area whereas the solution to the equality is a 1-d line or curve. And so on, in higher dimensional spaces.


How do you graph inequalities?

Through signs of inequality Solve each inequality Graph the solution? 2(m-3)+7<21 4(n-2)-6>18 9(x+2)>9(-3)


How does solving linear inequalities differ from solving linear equations?

Linear inequalities are equations, but instead of an equal sign, it has either a greater than, greater than or equal to, less than, or a less than or equal to sign. Both can be graphed. Solving linear equations mainly differs from solving linear inequalities in the form of the solution. 1. Linear equation. For each linear equation in x, there is only one value of x (solution) that makes the equation true. Example 1. The equation: x - 3 = 7 has one solution, that is x = 10. Example 2. The equation: 3x + 4 = 13 has one solution that is x = 3. 2. Linear inequality. On the contrary, a linear inequality has an infinity of solutions, meaning there is an infinity of values of x that make the inequality true. All these x values constitute the "solution set" of the inequality. The answers of a linear inequality are expressed in the form of intervals. Example 3. The linear inequality x + 5 < 9 has as solution: x < 4. The solution set of this inequality is the interval (-infinity, 4) Example 4. The inequality 4x - 3 > 5 has as solution x > 2. The solution set is the interval (2, +infinity). The intervals can be open, closed, and half closed. Example: The open interval (1, 4) ; the 2 endpoints 1 and 4 are not included in the solution set. Example: The closed interval [-2, 5] ; the 2 end points -2 and 5 are included. Example : The half-closed interval [3, +infinity) ; the end point 3 is included.