answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

Will an equation with an integer coefficient always have an integer solution?

No, an equation with integer coefficients does not always have an integer solution. For example, the equation (x + 1 = 2) has an integer solution, (x = 1), but the equation (2x + 3 = 1) has no integer solution since (x = -1) is not an integer. Solutions depend on the specific equation and its constraints, and rational or real solutions may exist instead.


What inequality has 3 and negative 5 as two of its solutions?

x+7 is greater than or equal to 2


Does an equation with an integer coefficient always have an integer solution?

No, an equation with integer coefficients does not always have an integer solution. For example, the equation (2x + 3 = 5) has the integer solution (x = 1), but the equation (x^2 + 1 = 0) has no real solutions, let alone integer ones. The existence of integer solutions depends on the specific form and constraints of the equation.


What are Solution of an inequality?

The solution of an inequality is a set of values that satisfy the inequality condition. For example, in the inequality ( x > 3 ), the solution includes all numbers greater than 3, such as 4, 5, or any number approaching infinity. Solutions can be expressed as intervals, such as ( (3, \infty) ), or as a number line representation. These solutions help identify the range of values that make the inequality true.


Which is true of the infinite solutions of the inequality X0?

The statement "X0" is unclear, but if you are referring to an inequality such as x > 0 or x ≤ 0, it indicates that there are infinite solutions within the specified range. For instance, if the inequality is x > 0, the solutions include all positive real numbers. These solutions can be represented on a number line or in interval notation, such as (0, ∞) for x > 0.

Related Questions

What are the integer solutions of the inequality x 4?

4 & |-4|


What are at least five inequality solutions to x-3?

x - 3 is not an inequality.


What are the solutions to the inequality (x-3)(x plus 5)o?

If you mean (x-3)(x+5) = 0 then x = 3 or x = -5


Find all integer values of x that make the equation or inequality true x2 equals 9?

that would be limited to 3 and -3 for values of x


Will an equation with an integer coefficient always have an integer solution?

No, an equation with integer coefficients does not always have an integer solution. For example, the equation (x + 1 = 2) has an integer solution, (x = 1), but the equation (2x + 3 = 1) has no integer solution since (x = -1) is not an integer. Solutions depend on the specific equation and its constraints, and rational or real solutions may exist instead.


What inequality has 3 and negative 5 as two of its solutions?

x+7 is greater than or equal to 2


What are Solution of an inequality?

The solution of an inequality is a set of values that satisfy the inequality condition. For example, in the inequality ( x > 3 ), the solution includes all numbers greater than 3, such as 4, 5, or any number approaching infinity. Solutions can be expressed as intervals, such as ( (3, \infty) ), or as a number line representation. These solutions help identify the range of values that make the inequality true.


Which is true of the infinite solutions of the inequality X0?

The statement "X0" is unclear, but if you are referring to an inequality such as x > 0 or x ≤ 0, it indicates that there are infinite solutions within the specified range. For instance, if the inequality is x > 0, the solutions include all positive real numbers. These solutions can be represented on a number line or in interval notation, such as (0, ∞) for x > 0.


How many different integer values of x satisfy this inequality 8x 2-xx?

To solve the inequality (8x^2 - x < 0), we first factor it as (x(8x - 1) < 0). The critical points are (x = 0) and (x = \frac{1}{8}). Analyzing the sign of the product in the intervals determined by these points, we find that the inequality holds for (0 < x < \frac{1}{8}). Since there are no integer values of (x) in this interval, the number of different integer values of (x) that satisfy the inequality is zero.


Which identifies all the integer solutions of x equals 14?

The equation ( x = 14 ) identifies a single integer solution, which is ( x = 14 ) itself. Since the equation specifies that ( x ) is equal to 14, there are no other integer solutions. Therefore, the only integer solution is ( {14} ).


What is solutions to the inequality x2 25?

x^2<25


What number is a solution of the inequality?

To determine a solution to an inequality, you need to specify the inequality itself. Solutions vary depending on the inequality's form, such as linear (e.g., (x > 3)) or quadratic (e.g., (x^2 < 4)). Once the inequality is provided, you can identify specific numbers that satisfy it. Please provide the inequality for a precise solution.