Yes, sometimes although a lot more often it is not.
Chat with our AI personalities
There cannot be any rational"between" the same number.
no. an integer is a whole, positive number, a rational number can be positive, negative, or a fraction
Such numbers cannot be ordered in the manner suggested by the question because: For every whole number there are integers, rational numbers, natural numbers, irrational numbers and real numbers that are bigger. For every integer there are whole numbers, rational numbers, natural numbers, irrational numbers and real numbers that are bigger. For every rational number there are whole numbers, integers, natural numbers, irrational numbers and real numbers that are bigger. For every natural number there are whole numbers, integers, rational numbers, irrational numbers and real numbers that are bigger. For every irrational number there are whole numbers, integers, rational numbers, natural numbers and real numbers that are bigger. For every real number there are whole numbers, integers, rational numbers, natural numbers and irrational numbers that are bigger. Each of these kinds of numbers form an infinite sets but the size of the sets is not the same. Georg Cantor showed that the cardinality of whole numbers, integers, rational numbers and natural number is the same order of infinity: aleph-null. The cardinality of irrational numbers and real number is a bigger order of infinity: aleph-one.
Yes. This is the same as asking for one rational number to be subtracted from another; to do this each rational number is made into an equivalent rational number so that the two rational numbers have the same denominator, and then the numerators are subtracted which gives a rational number which may possibly be simplified.
There is no infinite rational number. There are infinitely many of them but that is not the same.