No, it is not.
If the product of two matrices is an identity matrix then, one matrix is inverse of the other. i.e. AB = I then, A = B-1 and B = A-1Inverse of matrix can be found by using these two results:A = AI and A = IA.By using these results inverse of a matrix can be found by applying same elementary row or column operation on both sides. A on R.H.S. remains as it is.
The product of a p x q and a r x s matrix is defined only if q = r and, if so, it is a p x s matrix.
If the product of two matrices is the identity matrix then one matrix is the inverse or reciprocal of the other matrix. EXAMPLE A =(4 1) A-1 = (0.3 -0.1) then AA-1 = (1 0) .....(2 3)......... (-0.2 0.4)................... (1 1) The dots simply maintain the spacing and serve no other purpose.
You can indicate the multiplication with a multiplication sign. If your matrices are "A" and "B", the product is: A x B In other words, you are indicating the product, but not actually carrying out any multiplication. Anybody who understands about matrices should know what this refers to.
No, it is not.
answer
Explain the Matrix approach to product planning. Suggest a Marketing strategy on the basis of the product evaluation matrix.
If the product of two matrices is an identity matrix then, one matrix is inverse of the other. i.e. AB = I then, A = B-1 and B = A-1Inverse of matrix can be found by using these two results:A = AI and A = IA.By using these results inverse of a matrix can be found by applying same elementary row or column operation on both sides. A on R.H.S. remains as it is.
The product of a p x q and a r x s matrix is defined only if q = r and, if so, it is a p x s matrix.
If the product of two matrices is the identity matrix then one matrix is the inverse or reciprocal of the other matrix. EXAMPLE A =(4 1) A-1 = (0.3 -0.1) then AA-1 = (1 0) .....(2 3)......... (-0.2 0.4)................... (1 1) The dots simply maintain the spacing and serve no other purpose.
The singular form of matrices is matrix.
You can indicate the multiplication with a multiplication sign. If your matrices are "A" and "B", the product is: A x B In other words, you are indicating the product, but not actually carrying out any multiplication. Anybody who understands about matrices should know what this refers to.
The Kronecker product is a specific type of tensor product that is used for matrices, while the tensor product is a more general concept that can be applied to vectors, matrices, and other mathematical objects. The Kronecker product combines two matrices to create a larger matrix, while the tensor product combines two mathematical objects to create a new object with specific properties.
No. Only square matrices can be triangular.
The plural of matrix is matrices.
A determinant is defined only for square matrices, so a 2x3 matrix does not have a determinant.Determinants are defined only for square matrices, so a 2x3 matrix does not have a determinant.