No.
If the cardinality of a finite set is N, then that of its power set is 2N. These cannot be equal for any non-negative integer N.
The cardinality of [0,1) is equal to the cardinality of (0,1) which has the same cardinality as the real numbers.
In SQL (Structured Query Language), the term cardinality refers to the uniqueness of data values contained in a particular column (attribute) of a database table.The lower the cardinality, the more duplicated elements in a column. Thus, a column with the lowest possible cardinality would have the same value for every row. SQL databases use cardinality to help determine the optimal query plan for a given query.
Actually, infinity is not a natural number. It is simply a concept of having no upper bound. However, it is possible to have and compare different infinities. For example, we use aleph_0 to represent the cardinality (size) of the set of natural numbers. The cardinality of the set of integers, rational numbers, gaussian integers all have the same cardinality of aleph_0. The set of real numbers has cardinality aleph_1, which is greater than aleph_0. It is possible to create a sequence of increasing infinities (aleph_2, aleph_3, ...), which are called transfinite numbers.
Equivalent sets are sets that have the same cardinality. For finite sets it means that they have the same number of distinct elements.For infinite sets, though, things get a bit complicated. Then it is possible for a set to be equivalent to a proper subset of itself: for example, the set of all integers is equivalent to the set of all even integers. What is required is a one-to-one mapping, f(x) = 2x, from the first set to the second.
No. The "smallest" infinity is the cardinality of the natural numbers, N. This cardinality is named Aleph-null. Rational numbers also have the same cardinality as do n-tuples of rational numbers. The next larger cardinality is that of the real numbers. This is the "continuum, C, which equals 2aleph-null. As with the cardinality of the natural numbers, n-tuples of reals have the same cardinality. The point about introducing n-tuples, is that they are used to denote points in n-dimensional space. If you want more read some of the Wikipedia articles of Cantor, Hilbert's Grand Hotel. These could lead you to many more related articles - though sadly, not infinitely many!
Two sets are equivalent if they have the same cardinality. For finite sets this means that they must have the same number of distinct elements. For infinite sets, equal cardinality means that there must be a one-to-one mapping from one set to the other. This can lead to some counter-intuitive results. For example, the cardinality of the set of integers is the same as the cardinality of the set of even integers although the second set is a proper subset of the first. The relevant mapping is x -> 2x.
The cardinality of [0,1) is equal to the cardinality of (0,1) which has the same cardinality as the real numbers.
The cardinality of finite sets are the number of elements included in them however, union of infinite sets can be different as it includes the matching of two different sets one by one and finding a solution by matching the same amount of elements in those sets.
In SQL (Structured Query Language), the term cardinality refers to the uniqueness of data values contained in a particular column (attribute) of a database table.The lower the cardinality, the more duplicated elements in a column. Thus, a column with the lowest possible cardinality would have the same value for every row. SQL databases use cardinality to help determine the optimal query plan for a given query.
Actually, infinity is not a natural number. It is simply a concept of having no upper bound. However, it is possible to have and compare different infinities. For example, we use aleph_0 to represent the cardinality (size) of the set of natural numbers. The cardinality of the set of integers, rational numbers, gaussian integers all have the same cardinality of aleph_0. The set of real numbers has cardinality aleph_1, which is greater than aleph_0. It is possible to create a sequence of increasing infinities (aleph_2, aleph_3, ...), which are called transfinite numbers.
Equivalent sets are sets that have the same cardinality. For finite sets it means that they have the same number of distinct elements.For infinite sets, though, things get a bit complicated. Then it is possible for a set to be equivalent to a proper subset of itself: for example, the set of all integers is equivalent to the set of all even integers. What is required is a one-to-one mapping, f(x) = 2x, from the first set to the second.
No. The "smallest" infinity is the cardinality of the natural numbers, N. This cardinality is named Aleph-null. Rational numbers also have the same cardinality as do n-tuples of rational numbers. The next larger cardinality is that of the real numbers. This is the "continuum, C, which equals 2aleph-null. As with the cardinality of the natural numbers, n-tuples of reals have the same cardinality. The point about introducing n-tuples, is that they are used to denote points in n-dimensional space. If you want more read some of the Wikipedia articles of Cantor, Hilbert's Grand Hotel. These could lead you to many more related articles - though sadly, not infinitely many!
There are more irrational numbers than rational numbers. The rationals are countably infinite; the irrationals are uncountably infinite. Uncountably infinite means that the set of irrational numbers has a cardinality known as the "cardinality of the continuum," which is strictly greater than the cardinality of the set of natural numbers which is countably infinite. The set of rational numbers has the same cardinality as the set of natural numbers, so there are more irrationals than rationals.
There is no one to one correspondence between the real numbers and the set of integers. In fact, the cardinality of the real numbers is the same as the cardinality of the power set of the set of integers, that is, the set of all subsets of the set of integers.
Infinity squared is infinity. But there's more to it.Mathematicians describe different kinds of infinities:The cardinality(number) of natural numbers is called Aleph0 () . This is infinite, and it has some peculiar properties:The cardinality of even numbers is also Aleph0.As is the cardinality of odd numbers.As is the cardinality of rational numbers (which you could view as infinity squared, but it still gives you infinity.The cardinality of countable ordinal numbers is called Aleph1 ().The cardinality of the real numbers is two to the exponent of Aleph0 ( ). The continuum hypothesis says this is equal to Aleph1.Basically, if you square an infinite set from a given cardinality, the cardinality stays the same (meaning Aleph0 squared is still Aleph0, etc.)If your mind just burst(cause mine did! 0_o), do not worry. This is a common reaction to set theory.See the related link for more on Aleph numbers, which are how mathematicians view infinity.
No. The number of subsets of that set is strictly greater than the cardinality of that set, by Cantor's theorem. Moreover, it's consistent with ZFC that there are two sets which have different cardinality, yet have the same number of subsets.
Curiously, both sets are countably infinite and so their cardinality is the same.