There is no one to one correspondence between the real numbers and the set of integers. In fact, the cardinality of the real numbers is the same as the cardinality of the power set of the set of integers, that is, the set of all subsets of the set of integers.
Chat with our AI personalities
Proof By Contradiction:Claim: R\Q = Set of irrationals is countable.Then R = Q union (R\Q)Since Q is countable, and R\Q is countable (by claim), R is countable because the union of countable sets is countable.But this is a contradiction since R is uncountable (Cantor's Diagonal Argument).Thus, R\Q is uncountable.
You can choose an irrational number to be either greater or smaller than any given rational number. On the other hand, if you mean which set is greater: the set of irrational numbers is greater. The set of rational numbers is countable infinite (beth-0); the set of irrational numbers is uncountable infinite (more specifically, beth-1 - there are larger uncountable numbers as well).
real numbers
the set of real numbers
Yes. The set of real numbers is closed under addition, subtraction, multiplication. The set of real numbers without zero is closed under division.