Positively skewed.
A normal distribution is not skewed. Skewness is a measure of how the distribution has been pulled away from the normal.A feature of a distribution is the extent to which it is symmetric.A perfectly normal curve is symmetric - both sides of the distribution would exactly correspond if the figure was folded across its median point.It is said to be skewed if the distribution is lop-sided.The word, skew, comes from derivations associated with avoiding, running away, turning away from the norm.So skewed to the right, or positively skewed, can be thought of as grabbing the positive end of the bell curve and dragging it to the right, or positive, direction to give it a long tail in the positive direction, with most of the data still concentrated on the left.Then skewed to the left, or negatively skewed, can be thought of as grabbing the negative end of the bell curve and dragging it to the left, or negative, direction to give it a long tail in the negative direction, with most of the data still bunched together on the right.Warning: A number of textbooks are not correct in their use of the term 'skew' in relation to skewed distributions, especially when describing 'skewed to the right' or 'skewed to the left'.
Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point.The Shape of a HistogramA histogram is unimodal if there is one hump, bimodal if there are two humps and multimodal if there are many humps. A nonsymmetric histogram is called skewed if it is not symmetric. If the upper tail is longer than the lower tail then it is positively skewed. If the upper tail is shorter than it is negatively skewed.Unimodal, Symmetric, NonskewedNonsymmetric, Skewed RightBimodal
If the population distribution is roughly normal, the sampling distribution should also show a roughly normal distribution regardless of whether it is a large or small sample size. If a population distribution shows skew (in this case skewed right), the Central Limit Theorem states that if the sample size is large enough, the sampling distribution should show little skew and should be roughly normal. However, if the sampling distribution is too small, the sampling distribution will likely also show skew and will not be normal. Although it is difficult to say for sure "how big must a sample size be to eliminate any population skew", the 15/40 rule gives a good idea of whether a sample size is big enough. If the population is skewed and you have fewer that 15 samples, you will likely also have a skewed sampling distribution. If the population is skewed and you have more that 40 samples, your sampling distribution will likely be roughly normal.
A measure of skewness is Pearson's Coefficient of Skew. It is defined as: Pearson's Coefficient = 3(mean - median)/ standard deviation The coefficient is positive when the median is less than the mean and in that case the tail of the distribution is skewed to the right (notionally the positive section of a cartesian frame). When the median is more than the mean, the cofficient is negative and the tail of the distribution is skewed in the left direction i.e. it is longer on the left side than on the right.
A distribution or set of observations is said to be skewed left or negatively skewed if it has a longer "tail" of numbers on the left. The mass of the distribution is more towards the right of the figure rather than the middle.
A distribution or set of observations is said to be skewed right or positively skewed if it has a longer "tail" of numbers on the right. The mass of the distribution is more towards the left of the figure rather than the middle.
No, as you said it is right skewed.
As the mean is greater than the median it will be positively skewed (skewed to the right), and if the median is larger than the mean it will be negatively skewed (skewed to the left)
Symmetric
A positively skewed or right skewed distribution means that the mean of the data falls to the right of the median. Picturewise, most of the frequency would occur to the left of the graph.
skewed right.
In the majority of Empirical cases the mean will not be equal to the median, so the event is hardly unusual. If the mean is greater, then the distribution is poitivelt skewed (skewed to the right).
When a distribution is skewed to the right, the mean is greater than median.
Skews are used on a graph. If the points or lines go to one side then they are skewed to the right or left. For example, If your lines or plots start low and go up right to the right, then it is skewed to the right (same as the left). Now, if the plots are everywhere then there is no skew.
The distribution is skewed to the right.
False. It can be skewed to the left or right or be symmetrical.