Want this question answered?
The mean deviation for any distribution is always 0 and so conveys no information whatsoever. The standard deviation is the square root of the variance. The variance of a set of values is the sum of the probability of each value multiplied by the square of its difference from the mean for the set. A simpler way to calculate the variance is Expected value of squares - Square of Expected value.
Because it is defined as the principal square root of the variance.
No. The variance of any distribution is the sum of the squares of the deviation from the mean. Since the square of the deviation is essentially the square of the absolute value of the deviation, that means the variance is always positive, be the distribution normal, poisson, or other.
The standard deviation in a standard normal distribution is 1.
There is 1) standard deviation, 2) mean deviation and 3) mean absolute deviation. The standard deviation is calculated most of the time. If our objective is to estimate the variance of the overall population from a representative random sample, then it has been shown theoretically that the standard deviation is the best estimate (most efficient). The mean deviation is calculated by first calculating the mean of the data and then calculating the deviation (value - mean) for each value. If we then sum these deviations, we calculate the mean deviation which will always be zero. So this statistic has little value. The individual deviations may however be of interest. See related link. To obtain the means absolute deviation (MAD), we sum the absolute value of the individual deviations. We will obtain a value that is similar to the standard deviation, a measure of dispersal of the data values. The MAD may be transformed to a standard deviation, if the distribution is known. The MAD has been shown to be less efficient in estimating the standard deviation, but a more robust estimator (not as influenced by erroneous data) as the standard deviation. See related link. Most of the time we use the standard deviation to provide the best estimate of the variance of the population.
The variance is standard deviation squared, or, in other terms, the standard deviation is the square root of the variance. In many cases, this means that the variance is bigger than the standard deviation - but not always, it depends on the specific values.
Yes, the variance of a data set is the square of the standard deviation (sigma) of the set. This means that the variance is always a positive number, even though the data might have a negative sigma value.
No.
The mean deviation for any distribution is always 0 and so conveys no information whatsoever. The standard deviation is the square root of the variance. The variance of a set of values is the sum of the probability of each value multiplied by the square of its difference from the mean for the set. A simpler way to calculate the variance is Expected value of squares - Square of Expected value.
no it is not possible because you have to take the square of error that is (x-X)2. the square of any number is always positive----------Improved answer:It is not possible to have a negative standard deviation because:SD (standard deviation) is equal to the square of V (variance).
Let sigma = standard deviation. Standard error (of the sample mean) = sigma / square root of (n), where n is the sample size. Since you are dividing the standard deviation by a positive number greater than 1, the standard error is always smaller than the standard deviation.
Because it is defined as the principal square root of the variance.
No. The variance of any distribution is the sum of the squares of the deviation from the mean. Since the square of the deviation is essentially the square of the absolute value of the deviation, that means the variance is always positive, be the distribution normal, poisson, or other.
The standard deviation in a standard normal distribution is 1.
There is 1) standard deviation, 2) mean deviation and 3) mean absolute deviation. The standard deviation is calculated most of the time. If our objective is to estimate the variance of the overall population from a representative random sample, then it has been shown theoretically that the standard deviation is the best estimate (most efficient). The mean deviation is calculated by first calculating the mean of the data and then calculating the deviation (value - mean) for each value. If we then sum these deviations, we calculate the mean deviation which will always be zero. So this statistic has little value. The individual deviations may however be of interest. See related link. To obtain the means absolute deviation (MAD), we sum the absolute value of the individual deviations. We will obtain a value that is similar to the standard deviation, a measure of dispersal of the data values. The MAD may be transformed to a standard deviation, if the distribution is known. The MAD has been shown to be less efficient in estimating the standard deviation, but a more robust estimator (not as influenced by erroneous data) as the standard deviation. See related link. Most of the time we use the standard deviation to provide the best estimate of the variance of the population.
Because the average deviation will always be zero.
A large standard deviation means that the data were spread out. It is relative whether or not you consider a standard deviation to be "large" or not, but a larger standard deviation always means that the data is more spread out than a smaller one. For example, if the mean was 60, and the standard deviation was 1, then this is a small standard deviation. The data is not spread out and a score of 74 or 43 would be highly unlikely, almost impossible. However, if the mean was 60 and the standard deviation was 20, then this would be a large standard deviation. The data is spread out more and a score of 74 or 43 wouldn't be odd or unusual at all.