A*sin(x) + cos(x) = 1B*sin(x) - cos(x) = 1Add the two equations: A*sin(x) + B*sin(x) = 2(A+B)*sin(x) = 2sin(x) = 2/(A+B)x = arcsin{2/(A+B)}That is the main solution. There may be others: depending on the range for x.
Angle A = 52° 15' = 52 25° therefore angle B = 90 - 52.25 = 37.75°. Using the Sine Rule : a/sin A = b/sin B. 6.7808/sin 52.25 = b/sin 37.75 : b = 6.7808 sin 37.75 ÷ sin 52.25 = 5.2503 Either using the Sine Rule or Pythagoras gives the length of the hypotenuse as 8.5758
If the question is, "What is b if b + 24 = 19 ?", then : b + 24 = 19 b = 19 - 24 = -5
b = 40 - a, c = 42 - a so b + c = 40 - a + 42 - a, ie 82 -2a = 34 so a = 48/2 ie 24 b = 40 - 24 ie 16 and c = 42 - 24 ie 18
Example: 24 = 42
28 The Law of Sines: a/sin A = b/sin B = c/sin C 24/sin 42˚ = c/sin (180˚ - 42˚ - 87˚) since there are 180˚ in a triangle. 24/sin 42˚ = c/sin 51˚ c = 24(sin 51˚)/sin 42˚ ≈ 28
By use of the sine rule: sin A / BC = sin B / AC = sin C / AB Angles B and C are known, as is length AC, so: sin B / AC = sin C / AB AB = AC x sin C / sin B AB = 17cm x sin 24 / sin 95 ~= 6.94cm The ratios for the sine rule can also be given the other way up: BC / sin A = AC / sin B = AB / sin C (I learnt the rule the first way.) Further, if r is the radius of the triangle's circumcircle, then: sin A / BC = 1/2r or BC / sin A = 2r
24/25
By the sine rule, sin(C)/c = sin(B)/b so sin(C) = 25/15*sin(32d15m) = 0.8894 so C = 62.8 deg or 117.2 deg. Therefore, A = 180 - (B+C) = 85.0 deg or 30.5 deg and then, using the sine rule again, a/sin(A) = b/sin(B) so a = sin(A)*b/sin(B) = 28 or a = 14.3
First, note that sin(a+b)=sin(a)cos(b)+sin(b)cos(a)[For a proof, see: www.mathsroom.co.uk/downloads/Compound_Angle_Proof.pptFor the case of b=a, we have:sin (a+a)=sin(a)cos(a)+sin(a)cos(a)sin (2a)=2*sin(a)cos(a)
A*sin(x) + cos(x) = 1B*sin(x) - cos(x) = 1Add the two equations: A*sin(x) + B*sin(x) = 2(A+B)*sin(x) = 2sin(x) = 2/(A+B)x = arcsin{2/(A+B)}That is the main solution. There may be others: depending on the range for x.
Well, darling, if we square the first equation and the second equation, add them together, and do some algebraic magic, we can indeed show that a squared plus b squared equals 89. It's like a little math puzzle, but trust me, the answer is as sassy as I am.
Angle A = 52° 15' = 52 25° therefore angle B = 90 - 52.25 = 37.75°. Using the Sine Rule : a/sin A = b/sin B. 6.7808/sin 52.25 = b/sin 37.75 : b = 6.7808 sin 37.75 ÷ sin 52.25 = 5.2503 Either using the Sine Rule or Pythagoras gives the length of the hypotenuse as 8.5758
24 Bottles of Beer in a Case
If the question is, "What is b if b + 24 = 19 ?", then : b + 24 = 19 b = 19 - 24 = -5
b = 40 - a, c = 42 - a so b + c = 40 - a + 42 - a, ie 82 -2a = 34 so a = 48/2 ie 24 b = 40 - 24 ie 16 and c = 42 - 24 ie 18
24 = 42