A cone has a base that is a circle. The radius of that circle is its radius.
Chat with our AI personalities
Treat the 3D sphere as a 2D circle. The radius for the sphere is the same radius as for the circle. No matter where on the sphere you place a mark, the distance (radius) from the mark to the centre of the sphere will always be the same as the circle.
The volume of a cone is 1/3(h)(pi)(r2), where h is the height of the cone, pi is 3.1415 and r is the radius of the circle that forms the bottom. The volume of sphere is 4/3(pi)(r2) where pi is 3.1415 and r is the radius of the sphere. The (r2) means radius squared. If you put in the values of r for each and the value of h for the cone and solve the two equations, and the answers are the same, the volumes are the same. We can set the expression for the volume of a cone equal to the expression for the volume of a sphere. If, when we plug in the variables, they are equal, the volumes will be equal. Vcone = Vsphere 1/3 (h) (pi) (rc2) = 4/3 (pi) (rs2)
1884 cm3
the cylinder
The radius of a sphere is equal distance from the center of the sphere to all points within the sphere.