sin(pi) = 0
sin(pi) = 0 so 4*sin(pi) = 0 so Y = 0
Any multiple of or addition to or subtraction from PI is an irrational number. PI divided by PI is 1, a rational number. So is PI times 0 = 0
0, pi/6, pi/4, pi/3, pi/2, pi and 2pi radians. To the less mathematically minded, these are 0, 30, 45, 60, 90, 180 and 360 degrees.
(cos(pi x) + sin(pi y) )^8 = 44 differentiate both sides with respect to x 8 ( cos(pi x) + sin (pi y ) )^7 d/dx ( cos(pi x) + sin (pi y) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (-sin (pi x) pi + cos (pi y) pi dy/dx ) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (pi cos(pi y) dy/dx - pi sin (pi x) ) = 0 cos(pi y) dy/dx - pi sin(pi x) = 0 cos(pi y) dy/dx = sin(pi x) dy/dx = sin (pi x) / cos(pi y)
Yes. For example: pi - pi = 0
sin(-pi) = sin(-180) = 0 So the answer is 0
sin(pi) = 0
sin(pi) = 0 so 4*sin(pi) = 0 so Y = 0
Any multiple of or addition to or subtraction from PI is an irrational number. PI divided by PI is 1, a rational number. So is PI times 0 = 0
Arrays can be regarded as constant pointers. Example: int *pi, ai[5]; pi= ai; /* okay */ pi[0]= ai[0]; /* okay */ ai[0]= pi[0]; /* okay */ pi= (int *)malloc (10*sizeof (int)); /* okay */ ai= pi; /* NOT okay */ ai= (int *)malloc (10*sizeof (int)); /* NOT okay */
The answer is:cos (pi/2) = 0
0, pi/6, pi/4, pi/3, pi/2, pi and 2pi radians. To the less mathematically minded, these are 0, 30, 45, 60, 90, 180 and 360 degrees.
(cos(pi x) + sin(pi y) )^8 = 44 differentiate both sides with respect to x 8 ( cos(pi x) + sin (pi y ) )^7 d/dx ( cos(pi x) + sin (pi y) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (-sin (pi x) pi + cos (pi y) pi dy/dx ) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (pi cos(pi y) dy/dx - pi sin (pi x) ) = 0 cos(pi y) dy/dx - pi sin(pi x) = 0 cos(pi y) dy/dx = sin(pi x) dy/dx = sin (pi x) / cos(pi y)
sin(2x) + sin(x) = 0 2sin(x)cos(x) + sin(x) = 0 sin(x)[2cos(x) + 1] = 0 sin(x) = 0 OR 2cos(x) + 1 = 0 sin(x) = 0 OR cos(x) = -1/2 x = n*pi OR x = 2/3*pi + 2n*pi OR x = -2/3*pi + 2n*pi x = pi*[2n + (0 OR 2/3 OR 1 OR 4/3)] Note that n may be any integer. The solutions in [-2pi, 2pi] are: -2pi, -4/3pi, -pi, -2/3pi, 0, 2/3pi, pi, 4/3pi, 2pi
the piecewise linear chaotic map is defined as follows: xi+1=Fpi(xi)= xi/pi if 0<=xi<pi (xi-pi)/(0.5-pi) if pi<=xi<0.5 Fp(1-xi) if xi>=0.5 where 0<=xi<1 and the control parameter 0<pi<0.5
cos2x + 2sinx - 2 = 0 (1-2sin2x)+2sinx-2=0 -(2sin2x-2sinx+1)=0 -2sinx(sinx+1)=0 -2sinx=0 , sinx+1=0 sinx=0 , sinx=1 x= 0(pi) , pi/2 , pi