Equations of the form y2 = x3 + ax + b are powerful mathematical tools. The Birch and Swinnerton-Dyer conjecture tells how to determine how many solutions they have in the realm of rational numbers-information that could solve a host of problems, if the conjecture is true.
There is no infinite rational number. There are infinitely many of them but that is not the same.
To determine whether a polynomial equation has imaginary solutions, you must first identify what type of equation it is. If it is a quadratic equation, you can use the quadratic formula to solve for the solutions. If the equation is a cubic or higher order polynomial, you can use the Rational Root Theorem to determine if there are any imaginary solutions. The Rational Root Theorem states that if a polynomial equation has rational solutions, they must be a factor of the constant term divided by a factor of the leading coefficient. If there are no rational solutions, then the equation has imaginary solutions. To use the Rational Root Theorem, first list out all the possible rational solutions. Then, plug each possible rational solution into the equation and see if it is a solution. If there are any solutions, then the equation has imaginary solutions. If not, then there are no imaginary solutions.
Yes. There are infinite whole numbers, and whole numbers are rational.
There is an infinite number of them between any two rational numbers.
That is the property of infinite density of rational numbers. If x and y are any two rational numbers then w = (x + y)/2 is a rational number between them. And then there is a rational number between x and w. This process can be continued without end.
If a and b are both rational then a = 0 = b. If they are not both rational then there are an infinite number of solutions.
There is no infinite rational number. There are infinitely many of them but that is not the same.
-- There's an infinite number of rational numbers. -- There's an infinite number of irrational numbers. -- There are more irrational numbers than rational numbers. -- The difference between the number of irrational numbers and the number of rational numbers is infinite.
There are an infinite number of them.
To determine whether a polynomial equation has imaginary solutions, you must first identify what type of equation it is. If it is a quadratic equation, you can use the quadratic formula to solve for the solutions. If the equation is a cubic or higher order polynomial, you can use the Rational Root Theorem to determine if there are any imaginary solutions. The Rational Root Theorem states that if a polynomial equation has rational solutions, they must be a factor of the constant term divided by a factor of the leading coefficient. If there are no rational solutions, then the equation has imaginary solutions. To use the Rational Root Theorem, first list out all the possible rational solutions. Then, plug each possible rational solution into the equation and see if it is a solution. If there are any solutions, then the equation has imaginary solutions. If not, then there are no imaginary solutions.
Yes. There are infinite whole numbers, and whole numbers are rational.
There are an infinite number of rational numbers between any two rational numbers.
yes it can
Yes, there are countably infinite rationals but uncountably infinite irrationals.
It is a rational number. An irrational number is a decimal that is infinite and has no repition or pattern.
It is Irrational. If you have an infinite number of decimals that doesn't have a specific pattern, then it is rational!
There is an infinite number of them between any two rational numbers.