you'd have a 50% chance of getting the 3rd and 4th question correct because you said the first 2 questions are already anwsered correctly :)
The probability of getting both answers correct is one chance in nine (0.1111+). There are three possible answers for each question, so there is a 1/3 chance of getting the correct answer to one question. To get the correct answer for both questions, the chances are 1/3 x 1/3 or 1/9.
That depends on how many questions there are, how many choices are listed for each question, and whether any obviously-stupid answers are included among the choices. If any of those factors changes, then the probability changes. One thing we can guarantee, however, even without knowing any of these factors: If you have studied the subject and know the material, then your probability of getting correct answers increases dramatically.
.00000003
0.05 I think is the answer
The odds of getting 100 percent on a 10 question multiple choice test with 2 possible answers for each question can be calculated using the probability formula. Since there are 2 options for each question, the probability of getting a question right by guessing is 1/2 or 0.5. To calculate the probability of getting all 10 questions correct by guessing, you would multiply the probability of getting each question right (0.5) by itself 10 times, resulting in a probability of (0.5)^10, which is approximately 0.0009765625 or 0.09765625%.
The probability will depend on how much you know and the extent of guessing.
The probability of correct true & false question is 1/2 and the probability correct multiple choice (four answer) question is 1/4. We want the probability of correct, correct, and correct. Therefore the probability all 3 questions correct is 1/2 * 1/2 * 1/4 = 1/16.
The probability of getting both answers correct is one chance in nine (0.1111+). There are three possible answers for each question, so there is a 1/3 chance of getting the correct answer to one question. To get the correct answer for both questions, the chances are 1/3 x 1/3 or 1/9.
That depends on how many questions there are, how many choices are listed for each question, and whether any obviously-stupid answers are included among the choices. If any of those factors changes, then the probability changes. One thing we can guarantee, however, even without knowing any of these factors: If you have studied the subject and know the material, then your probability of getting correct answers increases dramatically.
Well they are independent events so it is the probability of getting a correct answer multiplied by the probability of getting a correct answer on the second question. Short Answer: 1/5 times 1/5=1/25
The probability of getting at least 1 answer correct = 1 - Probability of getting all answers correct.So in your case it for be P(at least 1 answer correct) = 1 - 1/256where 256 is your sample space, |S| = 2^8.
What is the probability of what?Guessing them all correctly?Getting half of the correct?Getting them all wrong?PLEASE be specific with your questions if you want WikiAnswers to help.
.00000003
0.05 I think is the answer
The odds of getting 100 percent on a 10 question multiple choice test with 2 possible answers for each question can be calculated using the probability formula. Since there are 2 options for each question, the probability of getting a question right by guessing is 1/2 or 0.5. To calculate the probability of getting all 10 questions correct by guessing, you would multiply the probability of getting each question right (0.5) by itself 10 times, resulting in a probability of (0.5)^10, which is approximately 0.0009765625 or 0.09765625%.
In order to calculate such probability, you have to know the number of questions in that particular Myers Briggs test that refer to the Thinking/Feeling dichotomy. Assuming that you will pick answers randomly, the probability will be lower when there are more questions. For 8 questions on T/F preference, there is a 12.5% probability for a score of 0 on Feeling. For 16 questions, the probability is 6.2%. For 32 questions, the probability is 3.1%. etc. If you pick your answers according to your own beliefs, it would be very difficult to assess such a probability. However there will be a approx. 30% higher chance for a man to score 0 on Feeling than for a woman.
The probability of getting a perfect score in a three-question true or false quiz is 100% if you studied and retained the subject matter and the questions addressed that subject. If, however, you did not study, and you made pure guesses without any bias towards an answer partially based in your (now rather poor) knowledge, then the probability of getting any one question correct is 50%, so the probability of getting all three questions correct is 50% to the third power, or 12.5%.