answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
ReneRene
Change my mind. I dare you.
Chat with Rene
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach

Add your answer:

Earn +20 pts
Q: Prove that if a real sequence is bounded and monotone it converges?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How do you prove that if a real sequence is bounded and monotone it converges?

We prove that if an increasing sequence {an} is bounded above, then it is convergent and the limit is the sup {an }Now we use the least upper bound property of real numbers to say that sup {an } exists and we call it something, say S. We can say this because sup {an } is not empty and by our assumption is it bounded above so it has a LUB.Now for all natural numbers N we look at aN such that for all E, or epsilon greater than 0, we have aN > S-epsilon. This must be true, because if it were not the that number would be an upper bound which contradicts that S is the least upper bound.Now since {an} is increasing for all n greater than N we have |S-an|


Are bounded domain functions periodic?

No. You can always "cheat" to prove this by simply giving the function's domain a bound.Ex: f: [0,1] --> RI simply defined the function to have a bounded domain from 0 to 1 mapping to the codomain of the set of real numbers. The function itself can be almost anything, periodic or not.Another way to "cheat" is to simply recognize that all functions having a domain of R are bounded functions, by definition, in the complex plane, C.(Technically, you would say a non-compact Hermitian symmetric space has a bounded domain in a complex vector space.) Obviously, those functions include non-periodic functions as well.


Prove that no matter what the real numbers a and b are the sequence with nth term a nb is always an AP?

By "the nth term" of a sequence we mean an expression that will allow us to calculate the term that is in the nth position of the sequence. For example consider the sequence 2, 4, 6, 8, 10,... The pattern is easy to see. # The first term is two. # The second term is two times two. # The third term is two times three. # The fourth term is two times four. # The tenth term is two times ten. # the nineteenth term is two times nineteen. # The nth term is two times n. In this sequence the nth term is 2n.


If EBEC and ABDC prove?

if EB=EC and AB=DC prove <A=<D


How to prove an isosceles triangle with one angle bisector?

What have we got to prove? Whether we have to prove a triangle as an Isoseles triangle or prove a property of an isoseles triangle. Hey, do u go to ALHS, i had that same problem on my test today. Greenehornet15@yahoo.com