(1 - tan2x)/(1 + tan2x) = (1 - sin2x/cos2x)/(1 + sin2x/cos2x) = (cos2x - sin2x)/(cos2x + sin2x) = (cos2x - sin2x)/1 = (cos2x - sin2x) = cos(2x)
sin2x + c
Using x instead of theta, cos2x/cosec2x + cos4x = cos2x*sin2x + cos4x = cos2x*(sin2x + cos2x) = cos2x*1 = cos2x
cos(x)-cos(x)sin2(x)=[cos(x)][1-sin2(x)]cos(x)-cos(x)sin2(x)=[cos(x)][cos2(x)]cos(x)-cos(x)sin2(x)=cos3(x)
4 sin2x = 1. Then, (2sinx)2 = 1, 2sinx = ±1, and sinx = ±½. Whence, x = 90° or 270°; or, in radians, x = π/2 or 3π/2.
I will note x instead of theta tan(x) = sin(x) / cos(x) = 1/4 sin(x) = cos(x)/4 = ±sqrt(1-sin2x)/4 as cos2x + sin2 x = 1 4 sin(x) = ±sqrt(1-sin2x) 16 sin2x = 1-sin2x 17 sin2x = 1 sin2x = 1/17 sin(x) = ±1/sqrt(17)
The proof of this trig identity relies on the pythagorean trig identity, the most famous trig identity of all time: sin2x + cos2x = 1, or 1 - cos2x = sin2x. 1 + cot2x = csc2x 1 = csc2x - cot2x 1 = 1/sin2x - cos2x/sin2x 1 = (1 - cos2x)/sin2x ...using the pythagorean trig identity... 1 = sin2x/sin2x 1 = 1 So this is less of a proof and more of a verification.
According to de Moivre's formula, cos3x + isin3x = (cosx + isinx)3 = cos3x + 3cos2x*isinx + 3cosx*i2sin2x + i3sin3x Comparing the imaginary parts, isin3x = 3cos2x*isinx + i3sin3x so that sin3x = 3cos2x*sinx - sin3x = 3*(1-sin2x)sinx - sin3x = 3sinx - 4sin3x
(1 - tan2x)/(1 + tan2x) = (1 - sin2x/cos2x)/(1 + sin2x/cos2x) = (cos2x - sin2x)/(cos2x + sin2x) = (cos2x - sin2x)/1 = (cos2x - sin2x) = cos(2x)
-1
Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.
int cos3x=sin3x/3+c
sin2x / (1-cos x) = (1-cos2x) / (1-cos x) = (1-cos x)(1+cos x) / (1-cos x) = (1+cos x) sin2x=1-cos2x as sin2x+cos2x=1 1-cos2x = (1-cos x)(1+cos x) as a2-b2=(a-b)(a+b)
sin2x + 3*cos2x = 0sin2x = -3*cos2xtan2x = -32x = arctan(-3)x = 0.5*arctan(-3) in the domain which should have been specified. As none has, the question has no answer.
sin2x + c
Using x instead of theta, cos2x/cosec2x + cos4x = cos2x*sin2x + cos4x = cos2x*(sin2x + cos2x) = cos2x*1 = cos2x
cos(x)-cos(x)sin2(x)=[cos(x)][1-sin2(x)]cos(x)-cos(x)sin2(x)=[cos(x)][cos2(x)]cos(x)-cos(x)sin2(x)=cos3(x)