Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "times", "equals".
Chat with our AI personalities
it is not possible to get the Integral of cos2x log cosx-sinx coax plus since there are no symbols given in the equation.
log(f) + log(0.1) = 6 So log(f*0.1) = 6 so f*0.1 = 106 so f = 107
It is my first answer. Is the problem to solve A=B^X ? where A and B are positive integers and X the power exponent of B The given equation can be rewritten in a logarithm form. Log A = X * Log B solving for a unique X X = Log A / Log B The result: Any positive integer A can be rewritten as a positive integer B to the distinct power X. Where X is Log A divided by Log B A = B ^(Log A / Log B) I think, this is the solution. Roger Verbeeck
I will assume that the "2" after each log is a subscript (indicating log to the base 2). Basically, you must use the well-known logarithmic identities, a log b = log ba, and log a + log b = log ab. 2 log2x + log21 = log24 log2x2 + log21 = log24 log2x2(1) = log24 log2x2 = log24 Take antilogs on both sides: x2 = 4 In this last equation, x is either 2 or -2. However, negative numbers are not appropriate for the original equation (assuming real numbers), so the only solution is 2. For safety, this should be checked in the original equation; I'll leave that part to you.
Use the identity log(ab) = log a + log b to combine the logarithms on the left side into a single term. Then take antilogarithms (just take the log away) on both sides.