The starting value is Q(0) = (1/3)^(0/25) = (1/3)^0 = 1
Growth rate (per period, t) = 100*{Q(1)/Q(0)-1}
= 100*{(1/3)^(1/25)/1 - 1}
= 100*{0.9570 - 1} = -4.30 % approx.
Assuming that b > 0, it is an inverse power function or an inverse exponential function.
No, the equation y = 102x is not exponential. An exponential function is of the form y = a * b^x, where a and b are constants. In this case, the equation y = 102x is a linear function, as it represents a straight line with a slope of 102 and no exponential growth or decay.
No, the equation ( y = 1x ) is not an exponential function; it represents a linear function. In this equation, ( y ) is directly proportional to ( x ), resulting in a straight line when graphed. An exponential function typically has the form ( y = a \cdot b^x ), where ( b ) is a constant greater than zero and not equal to one.
Yes, the equation ( y = e^{-x} ) represents an exponential function. In this function, ( e ) is the base of the natural logarithm, and the exponent is a linear function of ( x ) (specifically, (-x)). Exponential functions are characterized by their constant base raised to a variable exponent, and ( e^{-x} ) fits this definition.
True
If the question is, Is y = x4 an exponential function ? then the answer is no.An exponential function is one where the variable appears as an exponent.So, y = 4x is an exponential function.
f(x) = bX is not an exponential function so the question makes no sense.
yes
Assuming that b > 0, it is an inverse power function or an inverse exponential function.
No, the equation y = 102x is not exponential. An exponential function is of the form y = a * b^x, where a and b are constants. In this case, the equation y = 102x is a linear function, as it represents a straight line with a slope of 102 and no exponential growth or decay.
No, the equation ( y = 1x ) is not an exponential function; it represents a linear function. In this equation, ( y ) is directly proportional to ( x ), resulting in a straight line when graphed. An exponential function typically has the form ( y = a \cdot b^x ), where ( b ) is a constant greater than zero and not equal to one.
Yes, the equation ( y = e^{-x} ) represents an exponential function. In this function, ( e ) is the base of the natural logarithm, and the exponent is a linear function of ( x ) (specifically, (-x)). Exponential functions are characterized by their constant base raised to a variable exponent, and ( e^{-x} ) fits this definition.
True
equals(x,y)=1 if x=y =0 otherwise show that this function is primitive recursive
a constant
any number
44