Best Answer


User Avatar

Wiki User

โˆ™ 2012-03-28 00:05:58
This answer is:
User Avatar
Study guides


20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

See all cards
1792 Reviews

Add your answer:

Earn +20 pts
Q: The area of a rectangle is 100 square inches The perimeter of the rectangle is 40 inches A second rectangle has the same area but a different perimeter Is the second rectangle a square?
Write your answer...
Still have questions?
magnify glass
Related questions

The area of a rectangle is 100 inches the perimeter is 40 a second rectangle has the same area but a different perimeter. Is the second rectangle a square?

the area of a rectangleis 100 square inches. The perimeter of the rectangle is 40 inches. A second rectangle has the same area but a different perimeter. Is the secind rectangle a square? Explain why or why not.

A 7-by-9 foot rectangle is similar to a second rectangle whose perimeter is 260 ft What are the dimensions of the second rectangle?

A Calculater???????????????????????????????????

Is the area the same on all rectangles with the same perimeter?

No, it is not. I'll give you two examples of a rectangle with a perimeter of 1. The first rectangle has dimensions of 1/4x1/4. The area is 1/16. The second rectangle has dimensions of 3/8x1/8. The area is 3/64. You can clearly see that these two rectangles have the same perimeter, yet the area is different.

Why it is possible for rectangles to have the same perimeters but different areas?

This is possible because you add perimiters but multiply areas. Consider a 2 x 4 rectangle and a 1 x 5 rectangle. The first has a perimeter of 12 (2+2+4+4), and an area of 8 (2 x 4). The second rectangle has a perimeter of 12 also (1+1+5+5), but an area of 5 (5 x 1). The closer a rectangle is to a perfect square, the larger the area will be, because a square maximizes area. A 3 x 3 square also has a perimeter of 12, but an area of 9. Heres another way to think about it: a rectangle that is one inch tall and 100 inches wide would have a perimeter of 202 inches, and an area of 100 square inches. If you added one inch to the side so that it was 101 inches wide, you would add 2 inches to the perimeter, but only one square inch to the area. However, if you made it one inch taller, you would still add 2 inches to the perimeter, but you would DOUBLE the area to 200 square inches.

If a rectangle has the same area does it have the same perimeter?

No.For example, a 1 metre * 72 metre rectangle and a 8 metre * 9 metre rectangle both have areas of 72 square metres. But the perimeter of the first is 146 metres while that of the second is 34 metres.

How do you tell the perimeter of a rectangle if you only have the area?

You can`t be sure of the individual sides. A one inch by sixteen inch rectangle, an eight by two inch rectangle, a four inch by four inch rectangle all have the same area (16 square inches) but the first rectangle`s sides add up to 34, the second rectangle`s sides add up to 20, the third rectangle`s sides add up to 16

Perimeter is equalto length plus width is a dimentionally correct?

Yes, your statement is dimensionally correct. But your formula is incorrect, and possibly ambiguous. First, the perimeter is only a simple sum involving length and width IF the figure is a rectangle. Second, the perimeter of the rectangle is double what you have stated: P = 2L + 2W

First side of triangle is 2 inches shorter than the second the third side is 5 inches longer than the second if the perimeter is 33 inches how long is each side?


Do you times the length of a rectangle by the perimeter to get the width?

No. In the first place, the word is "multiply", not "times", and in the second place, to get the width you divide the perimeter by two and then subtract the length (there are alternative methods, but none of them is even close to multiplying the length by the perimeter).

What is the dimension of a rectangle of 14 units?

The question cannot be answered. First, there is no information as to which measure of the rectangle is 14 units: a diameter, the perimeter, the area. Second, the answer to the question above does not provide sufficient information to answer the question.

What happens when the perimeter of a rectangle is 36 inches if the length is twice the width what is the area in square inches of the rectanglr?

Since the perimeter of a rectangle is 2 * length + 2 * width, 2l + 2w = 36 And since the length is twice the width, l = 2w Thus, you substitute 2w into the l in the first equation to get, 2(2w) + 2w = 36 4w + 2w = 36 6w = 36 w = 6 Plug the value of w into the second equation, l = 2(6) This will give you a length of 12. Since the area of rectangle is l * w, we just substitute the values in for length and width, l * w = 6 * 12 = 72 And that would be in square inches of course.

The perimeter of a triangle is 30 inches the first side of the triangle is 1 inch longer than the second side the second side is 7 inches longer than the third side what is the length of each side?


People also asked