Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.
A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.
you can say that it is polynomial if that have a exponent
The terms in a polynomial are seperated by a + or - So in given polynomial there are 4 terms.... abc , e, fg and h²
821. The explantion is that they can be generated by the polynomial below: the only polynomial of degree 4. There are infinitely many other possibilities and given any "next number" it is possible to find a polynomial of degree 5 that will generate the 5 given numbers and the specified "next". Un = (53n4 - 486n3 + 1627n2 - 2250n + 1068)/12 for n = 1, 2, 3, ...
Since no polynomial was given, no answer will be given.
None does, since there is no polynomial below.
We can't answer that without knowing what the polynomial is.
There is no polynomial below.(Although I'll bet there was one wherever you copied the question from.)
Answer this ques Which polynomial represents the sum below?(-x3 + 3x2 + 3) + (3x2 + x + 4)tion…
Evaluating a polynomial is finding the value of the polynomial for a given value of the variable, usually denoted by x. Solving a polynomial equation is finding the value of the variable, x, for which the polynomial equation is true.
-79
90
There are none because the discriminant of the given quadratic expression is less than zero.
Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.
An expression that completely divides a given polynomial without leaving a remainder is called a factor of the polynomial. This means that when the polynomial is divided by the factor, the result is another polynomial with no remainder. Factors of a polynomial can be found by using methods such as long division, synthetic division, or factoring techniques like grouping, GCF (greatest common factor), or special patterns.
The given polynomial does not have factors with rational coefficients.