You forgot to copy the polynomial. However, the Fundamental Theorem of Algebra states that every polynomial has at least one root, if complex roots are allowed. If a polynomial has only real coefficients, and it it of odd degree, it will also have at least one real solution.
To determine which binomial is a factor of a given polynomial, you can apply the Factor Theorem. According to this theorem, if you substitute a value ( c ) into the polynomial and it equals zero, then ( (x - c) ) is a factor. Alternatively, you can perform polynomial long division or synthetic division with the given binomials to see if any of them divides the polynomial without a remainder. If you provide the specific polynomial and the binomials you're considering, I can assist further.
Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.
A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.
To find the zeros of the polynomial from the given graph, identify the points where the graph intersects the x-axis. These intersection points represent the values of x for which the polynomial equals zero. If the graph crosses the x-axis at specific points, those x-values are the zeros of the polynomial. If the graph merely touches the x-axis without crossing, those points indicate repeated zeros.
you can say that it is polynomial if that have a exponent
Since no polynomial was given, no answer will be given.
To determine which binomial is a factor of a given polynomial, you can apply the Factor Theorem. According to this theorem, if you substitute a value ( c ) into the polynomial and it equals zero, then ( (x - c) ) is a factor. Alternatively, you can perform polynomial long division or synthetic division with the given binomials to see if any of them divides the polynomial without a remainder. If you provide the specific polynomial and the binomials you're considering, I can assist further.
None does, since there is no polynomial below.
We can't answer that without knowing what the polynomial is.
There is no polynomial below.(Although I'll bet there was one wherever you copied the question from.)
Answer this ques Which polynomial represents the sum below?(-x3 + 3x2 + 3) + (3x2 + x + 4)tion…
Evaluating a polynomial is finding the value of the polynomial for a given value of the variable, usually denoted by x. Solving a polynomial equation is finding the value of the variable, x, for which the polynomial equation is true.
90
-79
There are none because the discriminant of the given quadratic expression is less than zero.
Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.
An expression that completely divides a given polynomial without leaving a remainder is called a factor of the polynomial. This means that when the polynomial is divided by the factor, the result is another polynomial with no remainder. Factors of a polynomial can be found by using methods such as long division, synthetic division, or factoring techniques like grouping, GCF (greatest common factor), or special patterns.