To find the first three terms of an arithmetic sequence with a common difference of -5, we first need the last term. If we denote the last term as ( L ), the terms can be expressed as ( L + 10 ), ( L + 5 ), and ( L ) for the first three terms, since each term is derived by adding the common difference (-5) to the previous term. Thus, the first three terms would be ( L + 10 ), ( L + 5 ), and ( L ).
What is the 14th term in the arithmetic sequence in which the first is 100 and the common difference is -4? a14= a + 13d = 100 + 13(-4) = 48
16
An arithmetic sequence is a sequence of numbers in which the difference between consecutive terms is constant. For example, the sequence 2, 5, 8, 11, 14 has a common difference of 3. Another example is 10, 7, 4, 1, which has a common difference of -3. In general, an arithmetic sequence can be expressed as (a_n = a_1 + (n-1)d), where (a_1) is the first term and (d) is the common difference.
6
A single number, such as 11111, cannot define an arithmetic sequence. On the other hand, it can be the first element of any kind of sequence. On the other hand, if the question was about ``1, 1, 1, 1, 1'' then that is an arithmetic sequence as there is a common difference of 0 between each term.
What is the 14th term in the arithmetic sequence in which the first is 100 and the common difference is -4? a14= a + 13d = 100 + 13(-4) = 48
16
It is a + 8d where a is the first term and d is the common difference.
6
From any term after the first, subtract the preceding term.
6
A single number, such as 11111, cannot define an arithmetic sequence. On the other hand, it can be the first element of any kind of sequence. On the other hand, if the question was about ``1, 1, 1, 1, 1'' then that is an arithmetic sequence as there is a common difference of 0 between each term.
29
You subtract any two adjacent numbers in the sequence. For example, in the sequence (1, 4, 7, 10, ...), you can subtract 4 - 1, or 7 - 4, or 10 - 7; in any case you will get 3, which is the common difference.
The sum of the first 12 terms of an arithmetic sequence is: sum = (n/2)(2a + (n - 1)d) = (12/2)(2a + (12 - 1)d) = 6(2a + 11d) = 12a + 66d where a is the first term and d is the common difference.
You take the difference between the second and first numbers.Then take the difference between the third and second numbers. If that difference is not the same then it is not an arithmetic sequence, otherwise it could be.Take the difference between the fourth and third second numbers. If that difference is not the same then it is not an arithmetic sequence, otherwise it could be.Keep checking until you think the differences are all the same.That being the case it is an arithmetic sequence.If you have a position to value rule that is linear then it is an arithmetic sequence.
6