1. The side angle side theorem, when used for right triangles is often called the leg leg theorem. it says if two legs of a right triangle are congruent to two legs of another right triangle, then the triangles are congruent. Now if you want to think of it as SAS, just remember both angles are right angles so you need only look at the legs.
2. The next is the The Leg-Acute Angle Theorem which states if a leg and an acute angle of one right triangle are congruent to the corresponding parts of another right triangle, the two right triangles are congruent. This is the same as angle side angle for a general triangle. Just use the right angle as one of the angles, the leg and then the acute angle.
3. The Hypotenuse-Acute Angle Theorem is the third way to prove 2 right triangles are congruent. This one is equivalent to AAS or angle angle side. This theorem says if the hypotenuse and an acute angle of a right triangle are congruent to the hypotenuse and an acute angle of another right triangle, the two triangles are congruent. This is the same as AAS again since you can use the right angle as the second angle in AAS.
4. Last, but not least is Hypotenuse-Leg Postulate. Since it is NOT based on any other rules, this is a postulate and not a theorem. HL says if the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent.
Chat with our AI personalities
four types aressssasrhsasa1.HyL Theorem (Hypotenuse-Leg) - if the hypotenuse and leg of one triangle is congruent to another triangle's hypotenuse and leg, then the triangles are congruent.2.HyA (Hypotenuse-Angle) - if the hypotenuse and angle of one triangle is congruent to another triangle's hypotenuse and angle, then the triangles are congruent.3.LL (Leg-Leg) if the 2 legs of one triangle is congruent to another triangle's 2 legs, then the triangles are congruent.4.LA (Leg-Angle) if the angle and leg of one triangle is congruent to another triangle's angle and leg, then the triangles are congruent.
Only the square has.
A parallelogram with no right angles and four congruent sides is a Rhombus.
Not necessarly. If the sum of two of the sides congruent to each other are greater than that of the sides opposite them, then no. If however the kite forms a rombus ot square, the diagnoles will form four congruent triangles with the base of both being the line of symmetry.
A shape formed by four triangles would have to be a tetrahedron. But I believe that a tetrahedron can have at most three right angled triangles. One with four of them is, I think, impossible.