answersLogoWhite

0

The Discrete Time Fourier Transform (DTFT) has several limitations, including its reliance on periodic signals, which can lead to spectral leakage if the signal is not periodic or if the sampling period does not align with the signal's frequency components. Additionally, the DTFT is computationally intensive due to its infinite-length output, making it less practical for real-time applications. It also assumes that the input signal is sampled at a constant rate, which can introduce aliasing if the signal exceeds the Nyquist frequency. Lastly, the DTFT does not provide time-domain information, limiting its utility for analyzing non-stationary signals.

User Avatar

AnswerBot

2w ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What is the difference between Discrete-time Fourier transform and Discrete Fourier transform?

The Discrete Fourier Transform (DFT) is a specific mathematical algorithm used to compute the frequency spectrum of a finite sequence of discrete samples. In contrast, the Discrete-time Fourier Transform (DTFT) represents a continuous function of frequency for a discrete-time signal, allowing for the analysis of signals in the frequency domain over an infinite range. Essentially, the DFT is a sampled version of the DTFT, applied to a finite number of samples, whereas the DTFT provides a broader, continuous frequency representation of the signal.


Why discrete Fourier transform is used in digital signal processing?

The Discrete Fourier Transform (DFT) is used in digital signal processing to analyze the frequency content of discrete signals. It converts time-domain signals into their frequency-domain representations, enabling the identification of dominant frequencies, filtering, and spectral analysis. By efficiently transforming data, the DFT facilitates various applications, including audio and image processing, communication systems, and data compression. Its computational efficiency is further enhanced by the Fast Fourier Transform (FFT) algorithm, making it practical for real-time processing tasks.


Is there away to sort an array of data using the fast Fourier transform and finding the highest lower or average value finding his value or even best his position?

The Fast Fourier Transform is an implementation of the Discrete Fourier Transform. The DFT is a method of processing a time-sampled signal (eg, an audio wave) into a series of sines and cosines. As such, it is not a sorting algorithm, so this question does not make any sense.


What is the difference between fourier series and fourier transform with real life example please?

A Fourier series is a set of harmonics at frequencies f, 2f, 3f etc. that represents a repetitive function of time that has a period of 1/f. A Fourier transform is a continuous linear function. The spectrum of a signal is the Fourier transform of its waveform. The waveform and spectrum are a Fourier transform pair.


What is short time fourier transform and what are its properties?

The fractiona lFourier transform (FRFT) is a potent tool to analyze the chirp signal. However,it failsin locating the fractional Fourier domain (FRFD)-frequency contents which is requiredin some applications. The short-time fractional Fourier transform (STFRFT) is proposed to solve this problem

Related Questions

What is the difference between Discrete-time Fourier transform and Discrete Fourier transform?

The Discrete Fourier Transform (DFT) is a specific mathematical algorithm used to compute the frequency spectrum of a finite sequence of discrete samples. In contrast, the Discrete-time Fourier Transform (DTFT) represents a continuous function of frequency for a discrete-time signal, allowing for the analysis of signals in the frequency domain over an infinite range. Essentially, the DFT is a sampled version of the DTFT, applied to a finite number of samples, whereas the DTFT provides a broader, continuous frequency representation of the signal.


Application of fourier transform?

the main application of fourier transform is the changing a function from frequency domain to time domain, laplaxe transform is the general form of fourier transform .


Why discrete Fourier transform is used in digital signal processing?

The Discrete Fourier Transform (DFT) is used in digital signal processing to analyze the frequency content of discrete signals. It converts time-domain signals into their frequency-domain representations, enabling the identification of dominant frequencies, filtering, and spectral analysis. By efficiently transforming data, the DFT facilitates various applications, including audio and image processing, communication systems, and data compression. Its computational efficiency is further enhanced by the Fast Fourier Transform (FFT) algorithm, making it practical for real-time processing tasks.


Is there away to sort an array of data using the fast Fourier transform and finding the highest lower or average value finding his value or even best his position?

The Fast Fourier Transform is an implementation of the Discrete Fourier Transform. The DFT is a method of processing a time-sampled signal (eg, an audio wave) into a series of sines and cosines. As such, it is not a sorting algorithm, so this question does not make any sense.


What is the difference between fourier series and fourier transform with real life example please?

A Fourier series is a set of harmonics at frequencies f, 2f, 3f etc. that represents a repetitive function of time that has a period of 1/f. A Fourier transform is a continuous linear function. The spectrum of a signal is the Fourier transform of its waveform. The waveform and spectrum are a Fourier transform pair.


What is the Fourier Transform?

The Fourier transform is a mathematical transformation used to transform signals between time or spatial domain and frequency domain. It is reversible. It refers to both the transform operation and to the function it produces.


Difference between fourier transform and z-transform?

Laplace Transforms are used primarily in continuous signal studies, more so in realizing the analog circuit equivalent and is widely used in the study of transient behaviors of systems. The Z transform is the digital equivalent of a Laplace transform and is used for steady state analysis and is used to realize the digital circuits for digital systems. The Fourier transform is a particular case of z-transform, i.e z-transform evaluated on a unit circle and is also used in digital signals and is more so used to in spectrum analysis and calculating the energy density as Fourier transforms always result in even signals and are used for calculating the energy of the signal.


How can a composite signal be decomposed?

Spectral analysis of a repetitive waveform into a harmonic series can be done by Fourier analyis. This idea is generalised in the Fourier transform which converts any function of time expressed as a into a transform function of frequency. The time function is generally real while the transform function, also known as a the spectrum, is generally complex. A function and its Fourier transform are known as a Fourier transform pair, and the original function is the inverse transform of the spectrum.


What is short time fourier transform and what are its properties?

The fractiona lFourier transform (FRFT) is a potent tool to analyze the chirp signal. However,it failsin locating the fractional Fourier domain (FRFD)-frequency contents which is requiredin some applications. The short-time fractional Fourier transform (STFRFT) is proposed to solve this problem


What type of algorithm is fast fourier transform?

A fast fourier transform is an algorithm that converts time or space to frequency, or vice versa. They are mainly used in engineering, math and sciences.


How do you find the inverse Fourier transform from Fourier series coefficients?

To find the inverse Fourier transform from Fourier series coefficients, you first need to express the Fourier series coefficients in terms of the complex exponential form. Then, you can use the inverse Fourier transform formula, which involves integrating the product of the Fourier series coefficients and the complex exponential function with respect to the frequency variable. This process allows you to reconstruct the original time-domain signal from its frequency-domain representation.


How do you represent the discrete hilbert transform?

The discrete Hilbert transform can be represented using the convolution of a discrete signal with the kernel ( h[n] = \frac{1}{\pi n} ), where the convolution is defined for all integer ( n ). It can also be computed using the Fast Fourier Transform (FFT) by multiplying the frequency components of the signal by ( -i , \text{sgn}(f) ), where ( \text{sgn}(f) ) is the sign function. This approach efficiently computes the transform in the frequency domain and then transforms it back to the time domain using the inverse FFT.