Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals" etc. Also use ^ to indicate powers (eg x-squared = x^2).
There is no equation - only an expression. So there are no solutions (or solution intervals).
To determine if 3 is the solution to the equation (-13 - 1 = x - 15), we first simplify the left side: (-13 - 1 = -14). The equation then becomes (-14 = x - 15). Adding 15 to both sides gives (x = 1), not 3. Therefore, 3 is not the solution.
4
One solution. (cos x)2 - 2cos x = 3 Factor: (cos x - 3)(cos x + 1)= 0 cos x = {-1, 3} Solve: For cos x = -1, x = 180 deg No solution for cos x = 3
In mathematics, a solution of an equation refers to a value or set of values that satisfy the equation, making it true when substituted into the equation. For example, in the equation (x + 2 = 5), the solution is (x = 3) because substituting 3 for (x) results in a true statement. Solutions can be single numbers, intervals, or sets, depending on the nature of the equation.
There is no equation - only an expression. So there are no solutions (or solution intervals).
x+1=x+2 x=1+2+x 0x=1+2 0x=3 0x=/=3 (=/= means does not equal) so there is no solution
To determine if 3 is the solution to the equation (-13 - 1 = x - 15), we first simplify the left side: (-13 - 1 = -14). The equation then becomes (-14 = x - 15). Adding 15 to both sides gives (x = 1), not 3. Therefore, 3 is not the solution.
2
An equation with the solution set 1 and 3 can be written in factored form as (x-1)(x-3) = 0. When expanded, this equation becomes x^2 - 4x + 3 = 0. Therefore, the equation x^2 - 4x + 3 = 0 has the solution set 1 and 3.
4
One solution. (cos x)2 - 2cos x = 3 Factor: (cos x - 3)(cos x + 1)= 0 cos x = {-1, 3} Solve: For cos x = -1, x = 180 deg No solution for cos x = 3
To solve the inequality ( x^2 < 9 ), we first rewrite it as ( x^2 - 9 < 0 ), which factors to ( (x - 3)(x + 3) < 0 ). The critical points are ( x = -3 ) and ( x = 3 ). Analyzing the intervals, we find that the solution to the inequality is ( -3 < x < 3 ). Therefore, the values of ( x ) that satisfy the inequality are those in the open interval ( (-3, 3) ).
x2 + x + 1 = 0 ∴ x2 + x + 1/4 = -3/4 ∴ (x + 1/2)2 = -3/4 ∴ x + 1/2 = ± √(-3/4) ∴ x = - 1/2 ± (i√3) / 2 ∴ x = (-1 ± i√3) / 2
2x2-7x+3 = 0 (2x-1)(x-3) = 0 x = 1/2 or x = 3
y = x - 1 y - x = 3 y = x - 1 y = x + 3 Since both equations represent straight lines that have equal slopes, 1, then the lines are parallel to each other. That is that the lines do not intersect, and the system of the equations does not have a solution.
Linear inequalities are equations, but instead of an equal sign, it has either a greater than, greater than or equal to, less than, or a less than or equal to sign. Both can be graphed. Solving linear equations mainly differs from solving linear inequalities in the form of the solution. 1. Linear equation. For each linear equation in x, there is only one value of x (solution) that makes the equation true. The equation: x - 3 = 7 has one solution, that is x = 10. The equation: 3x + 4 = 13 has one solution that is x = 3. 2. Linear inequality. On the contrary, a linear inequality has an infinity of solutions, meaning there is an infinity of value of x that make the inequality true. All these x values constitute the "solution set" of the inequality. The answers of a linear inequality are expressed in the form of intervals. The linear inequality x + 5 < 9 has as solution: x < 4. The solution set of this inequality is the interval (-infinity, 4) The inequality 4x - 3 > 5 has as solution x > 2. The solution set is the interval (2, +infinity). The intervals can be open, closed, and half closed. The open interval (1, 4) ; the 2 endpoints 1 and 4 are not included in the solution set. The closed interval [-2, 5] ; the 2 end points -2 and 5 are included. The half-closed interval [3, +infinity) ; the end point 3 is included.