give me something to answer and ill answer it ASAP.. :D but here is my example 2 2 (a+b) (a-b) =a -b
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
To get the product, multiply the first number by the second. To get the sum, add the second number to the first. To get the difference, subtract the smaller number from the larger.
910
a²-b²
The ones that are the sum or the difference of two terms.
Binomials are algebraic expressions of the sum or difference of two terms. Some binomials can be broken down into factors. One example of this is the "difference between two squares" where the binomial a2 - b2 can be factored into (a - b)(a + b)
There are many different methods to factor polynomials in general; specifically for binomials, you can check:whether you can separate a common factor,whether the binomial is the difference of two squares,whether the binomial is the sum or difference of two cubes (or higher odd-numbered powers)
Binomials are algebraic expressions of the sum or difference of two terms. Some binomials can be broken down into factors. One example of this is the "difference between two squares" where the binomial a2 - b2 can be factored into (a - b)(a + b)
give me something to answer and ill answer it ASAP.. :D but here is my example 2 2 (a+b) (a-b) =a -b
underline numbers and do the sum with those numbers
0
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
To get the product, multiply the first number by the second. To get the sum, add the second number to the first. To get the difference, subtract the smaller number from the larger.
sum is addition difference is subtraction