answersLogoWhite

0

metase un palo por el orto

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What property of polynomial subtraction says that the difference of two polynomials is always a polynomial?

The property of polynomial subtraction that ensures the difference of two polynomials is always a polynomial is known as closure under subtraction. This property states that if you take any two polynomials, their difference will also yield a polynomial. This is because subtracting polynomials involves combining like terms, which results in a polynomial expression that adheres to the same structure as the original polynomials.


Is adding and subtracting polynomials the same?

Addition and subtraction are inverse functions.


Which property of polynomial subtraction says that the difference of two polynomials is always a polynomial?

The property that states the difference of two polynomials is always a polynomial is known as the closure property of polynomials. This property indicates that when you subtract one polynomial from another, the result remains within the set of polynomials. This is because polynomial operations (addition, subtraction, and multiplication) preserve the degree and structure of polynomials. Thus, the difference of any two polynomials will also be a polynomial.


What is the rules of addition and subtraction in polynomials?

6+6=12 Boom polynomial


Are polynomials closed under the operations of subtraction addition and multiplication?

Yes, polynomials are closed under the operations of addition, subtraction, and multiplication. This means that when you add, subtract, or multiply two polynomials, the result is always another polynomial. For example, if ( p(x) ) and ( q(x) ) are polynomials, then ( p(x) + q(x) ), ( p(x) - q(x) ), and ( p(x) \cdot q(x) ) are all polynomials as well. However, polynomials are not closed under division, as dividing one polynomial by another can result in a non-polynomial expression.

Related Questions

What property of polynomial subtraction says that the difference of two polynomials is always a polynomial?

The property of polynomial subtraction that ensures the difference of two polynomials is always a polynomial is known as closure under subtraction. This property states that if you take any two polynomials, their difference will also yield a polynomial. This is because subtracting polynomials involves combining like terms, which results in a polynomial expression that adheres to the same structure as the original polynomials.


Is adding and subtracting polynomials the same?

Addition and subtraction are inverse functions.


Which property of polynomial subtraction says that the difference of two polynomials is always a polynomial?

The property that states the difference of two polynomials is always a polynomial is known as the closure property of polynomials. This property indicates that when you subtract one polynomial from another, the result remains within the set of polynomials. This is because polynomial operations (addition, subtraction, and multiplication) preserve the degree and structure of polynomials. Thus, the difference of any two polynomials will also be a polynomial.


What is the rules of addition and subtraction in polynomials?

6+6=12 Boom polynomial


What property of polynomial subtraction says hat the difference of two polynomials is always a polynomial?

Closure


Are polynomials closed under the operations of subtraction addition and multiplication?

Yes, polynomials are closed under the operations of addition, subtraction, and multiplication. This means that when you add, subtract, or multiply two polynomials, the result is always another polynomial. For example, if ( p(x) ) and ( q(x) ) are polynomials, then ( p(x) + q(x) ), ( p(x) - q(x) ), and ( p(x) \cdot q(x) ) are all polynomials as well. However, polynomials are not closed under division, as dividing one polynomial by another can result in a non-polynomial expression.


How do you make working model of maths on polynomials?

Polynomials are the simplest class of mathematical expressions. The expression is constructed from variables and constants, using only the operations of addition, subtraction, multiplication and non-negative integer exponents.


What are the steps in adding polynomials?

== 45x2+56b== == ---- ---- + 34x+23x+56x


How do you subract polynomials example 18a-14a?

32


What operations are polynomials closed under?

+,-,X only


What are the terms of the polynomials?

each individual part separated by addition or subtraction. ex: 3x2 + 5x + 7 has 3 terms, 3x2 and 5x and 7


How are operations and properties of real numbers related to polynomials?

Operations and properties of real numbers, such as addition, subtraction, multiplication, and division, directly apply to polynomials since they are composed of real number coefficients and variables raised to non-negative integer powers. Polynomials can be manipulated using these operations, allowing for the application of properties like the distributive property, the commutative property, and the associative property. Additionally, the behavior of polynomials, including their roots and behavior at infinity, is fundamentally linked to the properties of real numbers. Thus, understanding real number operations is essential for working with and analyzing polynomials.