The x coordinate is the distance to the right (East) from the origin while the y coordinate is the distance up the page (North).
There are infinitely many possible correspondences between points in the coordinate plane. Some examples: Every point with coordinates (x+1, y) is one unit to the right of the point at (x, y). Every point with coordinates (x, y+1) is one unit up from the point at (x, y). Every point with coordinates (x, -y) is the reflection, in the y-axis of the point at (x, y).
When a point with coordinates (x, y) is rotated 180 degrees about the origin, its new coordinates become (-x, -y). This transformation reflects the point across both the x-axis and y-axis, effectively reversing its position. Thus, if you start with the point (x, y), after the rotation, it will be located at (-x, -y).
When a point is reflected over the y-axis, the x-coordinate changes its sign while the y-coordinate remains the same. For example, if a point has the coordinates (x, y), after reflection over the y-axis, its new coordinates will be (-x, y). This transformation effectively mirrors the point across the y-axis.
The midpoint B on line segment AC is the point that divides the segment into two equal lengths. To find the coordinates of B, you can use the midpoint formula: B = ((x₁ + x₂)/2, (y₁ + y₂)/2), where (x₁, y₁) are the coordinates of point A and (x₂, y₂) are the coordinates of point C. This point B represents the average of the coordinates of points A and C.
When a point with coordinates ((x, y)) is reflected over the x-axis, its x-coordinate remains the same while the y-coordinate changes sign. Thus, the new coordinates of the reflected point become ((x, -y)). This transformation effectively flips the point vertically, moving it to the opposite side of the x-axis.
Point A has coordinates (x,y). Point B (Point A rotated 270°) has coordinates (y,-x). Point C (horizontal image of Point B) has coordinates (-y,-x).
The coordinates of the point of intersection is (1,1).
There are infinitely many possible correspondences between points in the coordinate plane. Some examples: Every point with coordinates (x+1, y) is one unit to the right of the point at (x, y). Every point with coordinates (x, y+1) is one unit up from the point at (x, y). Every point with coordinates (x, -y) is the reflection, in the y-axis of the point at (x, y).
When a point with coordinates (x, y) is rotated 180 degrees about the origin, its new coordinates become (-x, -y). This transformation reflects the point across both the x-axis and y-axis, effectively reversing its position. Thus, if you start with the point (x, y), after the rotation, it will be located at (-x, -y).
When a point is reflected over the y-axis, the x-coordinate changes its sign while the y-coordinate remains the same. For example, if a point has the coordinates (x, y), after reflection over the y-axis, its new coordinates will be (-x, y). This transformation effectively mirrors the point across the y-axis.
The midpoint B on line segment AC is the point that divides the segment into two equal lengths. To find the coordinates of B, you can use the midpoint formula: B = ((x₁ + x₂)/2, (y₁ + y₂)/2), where (x₁, y₁) are the coordinates of point A and (x₂, y₂) are the coordinates of point C. This point B represents the average of the coordinates of points A and C.
When a point with coordinates ((x, y)) is reflected over the x-axis, its x-coordinate remains the same while the y-coordinate changes sign. Thus, the new coordinates of the reflected point become ((x, -y)). This transformation effectively flips the point vertically, moving it to the opposite side of the x-axis.
y' = y, x' = -x.
To determine the coordinates of a point after a reflection in the y-axis, you simply negate the x-coordinate while keeping the y-coordinate the same. For a point with coordinates ((x, y)), its reflection across the y-axis will be at ((-x, y)). This transformation effectively flips the point over the y-axis, maintaining its vertical position but reversing its horizontal position.
Replace each point with coordinates (x, y) by (-x, y).
The average of the x coordinates of the point(s) is the x coordinate of the mid point, The average of the y coordinates of the point(s) is the y coordinate of the mid point, and so on, through 3, 4 dimensions, etc.
A point on both the x and y axes is the origin, which is represented by the coordinates (0, 0). This point is where the two axes intersect, and it serves as a reference point for defining positions in a two-dimensional Cartesian coordinate system. Any point with coordinates (x, 0) lies on the x-axis, while points with coordinates (0, y) lie on the y-axis.