Want this question answered?
Be notified when an answer is posted
Chat with our AI personalities
wdwe
Your question seems very confused. The normal convention of the Cartesian coordinate system would place negative numbers below the x axis, so that any curve approaching negative infinity would curve downward, not upward.
Integrate the function for the curve, as normal, but the change the sign of the result. Be very careful that the curve is always on the same side of the x-axis between the limits of integration. If necessary, partition the integral. For example, to find the area between the x-axis and sin(x) between x=0 and x=3*pi, you will need Integral of sin(x) between 0 and pi, -[integral of sin(x) between pi and 2*pi] - this is where the curve is below the x-axis. +integral of sin(x) between 2*pi and 3*pi.
Take the definite integral (and your bounds should be the two places where the curve crosses the x-axis).
The solutions to a quadratic equation on a graph are the two points that cross the x-axis. NB A graphed quadratic equ'n produces a parabolic curve. If the curve crosses the x-axis in two different points it has two solution. If the quadratic curve just touches the x-axis , there is only ONE solution. It the quadratic curve does NOT touch the x-axis , then there are NO solutions. NNB In a quadratic equation, if the 'x^(2)' value is positive, then it produces a 'bowl' shaped curve. Conversely, if the 'x^(2)' value is negative, then it produces a 'umbrella' shaped curve.