Chat with our AI personalities
wdwe
Your question seems very confused. The normal convention of the Cartesian coordinate system would place negative numbers below the x axis, so that any curve approaching negative infinity would curve downward, not upward.
Take the definite integral (and your bounds should be the two places where the curve crosses the x-axis).
Integrate the function for the curve, as normal, but the change the sign of the result. Be very careful that the curve is always on the same side of the x-axis between the limits of integration. If necessary, partition the integral. For example, to find the area between the x-axis and sin(x) between x=0 and x=3*pi, you will need Integral of sin(x) between 0 and pi, -[integral of sin(x) between pi and 2*pi] - this is where the curve is below the x-axis. +integral of sin(x) between 2*pi and 3*pi.
The solutions to a quadratic equation on a graph are the two points that cross the x-axis. NB A graphed quadratic equ'n produces a parabolic curve. If the curve crosses the x-axis in two different points it has two solution. If the quadratic curve just touches the x-axis , there is only ONE solution. It the quadratic curve does NOT touch the x-axis , then there are NO solutions. NNB In a quadratic equation, if the 'x^(2)' value is positive, then it produces a 'bowl' shaped curve. Conversely, if the 'x^(2)' value is negative, then it produces a 'umbrella' shaped curve.