No. If it cuts a graph it is not an asymptote.
asymptote
Answer: no [but open to debate] ((x-1)(x-2)(x+2))/(x-3) (x^2-3x+2)/(x-2)(x+2) Asymptote missing, graph it, there is no Asymptote because the (x-2)(x+2) can be factored out. yes
if it touches at three points it is a straight line. Since it is also an asymptote, it will be a straight horizontal line (zero slope)
An asymptote.
No. If it cuts a graph it is not an asymptote.
No. The fact that it is an asymptote implies that the value is never attained. The graph can me made to go as close as you like to the asymptote but it can ever ever take the asymptotic value.
There is nothing in the definition of "asymptote" that forbids a graph to cross its asymptote. The only requirement for a line to be an asymptote is that if one of the coordinates gets larger and larger, the graph gets closer and closer to the asymptote. The "closer and closer" part is defined via limits.
no
approaches but does not cross
Asymptote
a line that a graph approaches as you move away from the origin
It can.
The horizontal asymptote is what happens when x really large. To start with get rid of all the variables except the ones with the biggest exponents. When x is really large, they are the only ones that will matter. If the remaining exponents are the same, then the ratio of those coefficients tell you where the horizontal asymptote is. For example if you have 2x3/3x3, then the ratio is 2/3 and the asymptote is f(x)=2/3 or y=2/3. If the exponent in the denominator is bigger, than y=0 is the horizontal asymptote. If the exponent in the numerator is bigger, than there is no horizontal asymptote.
asymptote
Answer: no [but open to debate] ((x-1)(x-2)(x+2))/(x-3) (x^2-3x+2)/(x-2)(x+2) Asymptote missing, graph it, there is no Asymptote because the (x-2)(x+2) can be factored out. yes
The graph of an exponential function f(x) = bx approaches, but does not cross the x-axis. The x-axis is a horizontal asymptote.