Unfortunately error codes returned by DirectX rarely mean anything. The developers show extreme laziness in this regard. The only way you are going to get any information about your problem is via running DirectX in Debug mode with diagnostics output turned on. The diagnostics text is actually very useful.
D3DERR_DRIVERINVALIDCALL = MAKE_D3DHRESULT(2157) = 0x8876086c = -2005530516 is defined in "d3d9.h"
Chat with our AI personalities
What does download error code 492 mean
If you mean: y =(lnx)3 then: dy/dx = [3(lnx)2]/x ddy/dx = [(6lnx / x) - 3(lnx)2] / x2 If you mean: y = ln(x3) Then: dy/dx = 3x2/x3 = 3/x = 3x-1 ddy/dx = -3x-2 = -3/x2
5ex+2?d/dx(u+v)=du/dx+dv/dxd/dx(5ex+2)=d/dx(5ex)+d/dx(2)-The derivative of 5ex is:d/dx(cu)=c*du/dx where c is a constant.d/dx(5ex)=5*d/dx(ex)-The derivative of 2 is 0 because it is a constant.d/dx(5ex+2)=(5*d/dx(ex))+(0)d/dx(5ex+2)=5*d/dx(ex)-The derivative of ex is:d/dx(eu)=eu*d/dx(u)d/dx(ex)=ex*d/dx(x)d/dx(5ex+2)=5*(ex*d/dx(x))-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(5ex+2)=5*(ex*1)d/dx(5ex+2)=5*(ex)d/dx(5ex+2)=5ex5ex+2?d/dx(cu)=c*du/dx where c is a constant.d/dx(5ex+2)=5*d/dx(ex+2)-The derivative of ex+2 is:d/dx(eu)=eu*d/dx(u)d/dx(ex+2)=ex+2*d/dx(x+2)d/dx(5ex+2)=5*(ex+2*d/dx(x+2))-The derivative of x+2 is:d/dx(u+v)=du/dx+dv/dxd/dx(x+2)=d/dx(x)+d/dx(2)d/dx(5ex+2)=5*[ex+2*(d/dx(x)+d/dx(2))]-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1-The derivative of 2 is 0 because it is a constant.d/dx(5ex+2)=5*[ex+2*(1+0)]d/dx(5ex+2)=5*[ex+2*(1)]d/dx(5ex+2)=5*[ex+2]d/dx(5ex+2)=5ex+2
!f you mean d/dx (1 + x-2) = -2x-3 If you mean d/dx (1 + x)-2 = -2(1 + x)-3
ln(x4)?d/dx(ln(u))=1/u*d/dx(u)d/dx(ln(x4))=[1/x4]*d/dx(x4)-The derivative of x4 is:d/dx(x4)=4x4-1d/dx(x4)=4x3d/dx(ln(x4))=[1/x4]*(4x3)d/dx(ln(x4))=4x3/x4d/dx(ln(x4))=4/x(lnx)4?Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(lnx)4=4(lnx)4-1*d/dx(lnx)d/dx(lnx)4=4(lnx)3*d/dx(lnx)-The derivative of lnx is:d/dx(ln(u))=1/u*d/dx(u)d/dx(lnx)=1/x*d/dx(x)d/dx(lnx)=1/x*(1)d/dx(lnx)=1/xd/dx(lnx)4=4(lnx)3*(1/x)d/dx(lnx)4=4(lnx)3/x