Chat with our AI personalities
You solve the equation for kinetic energy for mass. KE = (1/2) m v2 (1/2) m v2 = KE m = 2 KE / v2
The kinetic energy of a vehicle, of mass m kilograms and travelling at velocity v metres per second, is 1/2*m*v2.Using calculus, d(ke)/dv = m*v.That is, the kinetic energy (ke) increases by the product of the mass and the velocity. Whether or not that can be considered "tremendous" is another matter.The kinetic energy of a vehicle, of mass m kilograms and travelling at velocity v metres per second, is 1/2*m*v2.Using calculus, d(ke)/dv = m*v.That is, the kinetic energy (ke) increases by the product of the mass and the velocity. Whether or not that can be considered "tremendous" is another matter.The kinetic energy of a vehicle, of mass m kilograms and travelling at velocity v metres per second, is 1/2*m*v2.Using calculus, d(ke)/dv = m*v.That is, the kinetic energy (ke) increases by the product of the mass and the velocity. Whether or not that can be considered "tremendous" is another matter.The kinetic energy of a vehicle, of mass m kilograms and travelling at velocity v metres per second, is 1/2*m*v2.Using calculus, d(ke)/dv = m*v.That is, the kinetic energy (ke) increases by the product of the mass and the velocity. Whether or not that can be considered "tremendous" is another matter.
When the bike is moving at 2 m/s, its kinetic energy is (1/2 m v2) = (5 x 4) = 20 joules.When it's moving at 3 m/s, its kinetic energy is (1/2 m v2) = (5 x 9) = 45 joules.The difference between initial KE and final KE is (45 - 20) = 25 joules.That's how much work you have to do on it in order to increase its KE.
Kinetic energy of a moving mass is [ 1/2 m V2 .Initial KE of the kart = (1/2) (24) (1)2 = 12 joules.Final KE = (1/2) (24) (4)2 = 192 joules.Difference = amount of energy due to increased speed = (192 - 12) =180 joules.
That can't be answered without the question but kinetic energy (KE) can be calculated like this: KE = 0.5mv2, where m is mass (kg) and v is velocity (m/s)