That's unusual. I guess your teacher is trying to make you think a bit. It's a good mental exercise, though. You may recall that the units of acceleration are meters per second squared. That gives you a clue right there. And if you knew Calculus, you'd know that acceleration is the second derivative of distance, s, with respect to time, t: d2s/dt2. So, by now you're probably getting the feeling that the slope of a distance-time squared graph has something to do with acceleration. And you'd be right. Just as the slope of a velocity-time graph is acceleration, the slope of a distance-t2 graph is acceleration. Well, not quite. It's actually ONE HALF the acceleration.
The slope of a distance-time graph represents speed.
Since distance is 1/2 at^2 where a is acceleration, it represents one half of the acceleration
instantaneous magnitude of velocity
The slope of the curve at each point on thegraph is the speed at that point in time. (Not velocity.)
The speed. Also, if a positive slope represents the speed in one direction, the negative slope is the speed in the opposite direction.
The slope of a distance-time graph represents speed.
Since distance is 1/2 at^2 where a is acceleration, it represents one half of the acceleration
speed
The gradient (slope) of the line on the graph.
The slope of a time vs distance graph represents the speed or velocity of an object. It is calculated as the change in distance divided by the change in time. A steeper slope indicates a greater speed.
In general, nowhere, because acceleration is the second derivative of distance with respect to time. However, in the special case of a constant acceleration, the acceleration will be twice the slope of the line, since distance = 0.5 * time squared.
instantaneous magnitude of velocity
The slope of height vs. time squared graph equals (g) - acceleration due to gravity divided by two. In symbols m = g/2, where m is the slope and g is the acceleration due to gravity.
A slope of zero or a horizontal line on a distance-time graph represents an object at rest, not moving. This indicates that the object is not changing its position over time.
acceleration
The slope of the curve at each point on thegraph is the speed at that point in time. (Not velocity.)
The slope of a velocity-time graph represents acceleration.