The graphs of the two equations have only one intersection point.
Yes, it is possible for a system of three linear equations to have one solution. This occurs when the three equations represent three planes that intersect at a single point in three-dimensional space. For this to happen, the equations must be independent, meaning no two equations are parallel, and not all three planes are coplanar. If these conditions are met, the system will yield a unique solution.
A consistent system with independent equations is one in which there is at least one solution, and the equations do not overlap in their constraints, meaning that no equation can be derived from another. In such a system, the equations represent different planes (or lines in two dimensions), and they intersect at one unique point (in the case of two variables) or along a line (for three variables). This unique intersection indicates that the system has a single solution that satisfies all equations simultaneously.
The three quantities of solution for linear equations are consistent, inconsistent, and dependent. A consistent system has at least one solution, either unique or infinitely many. An inconsistent system has no solutions, meaning the equations represent parallel lines that never intersect. A dependent system has infinitely many solutions, indicating that the equations represent the same line in different forms.
It represents the point of intersection on a graph.
It is a set of equations, which is also called a system of equations. There may be no solution, a single (unique) solution or more than one - including infinitely many.
The set of points the graphed equations have in common. This is usually a single point but the lines can be coincident in which case the solution is a line or they can be parallel in which case there are no solutions to represent.
A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.
The two equations represent parallel lines.
Yes, it is possible for a system of three linear equations to have one solution. This occurs when the three equations represent three planes that intersect at a single point in three-dimensional space. For this to happen, the equations must be independent, meaning no two equations are parallel, and not all three planes are coplanar. If these conditions are met, the system will yield a unique solution.
A consistent system with independent equations is one in which there is at least one solution, and the equations do not overlap in their constraints, meaning that no equation can be derived from another. In such a system, the equations represent different planes (or lines in two dimensions), and they intersect at one unique point (in the case of two variables) or along a line (for three variables). This unique intersection indicates that the system has a single solution that satisfies all equations simultaneously.
The three quantities of solution for linear equations are consistent, inconsistent, and dependent. A consistent system has at least one solution, either unique or infinitely many. An inconsistent system has no solutions, meaning the equations represent parallel lines that never intersect. A dependent system has infinitely many solutions, indicating that the equations represent the same line in different forms.
Equations with the same solution are called dependent equations, which are equations that represent the same line; therefore every point on the line of a dependent equation represents a solution. Since there is an infinite number of points on a line, there is an infinite number of simultaneous solutions. For example, 2x + y = 8 4x + 2y = 16 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. A system of linear equations is consistent if there is only one solution for the system. A system of linear equations is inconsistent if it does not have any solutions.
one solution; the lines that represent the equations intersect an infinite number of solution; the lines coincide, or no solution; the lines are parallel
It represents the point of intersection on a graph.
It is a set of equations, which is also called a system of equations. There may be no solution, a single (unique) solution or more than one - including infinitely many.
If the graphs of the two equations in a system are the same, the system must have A. more than 1 solution. This is because the two equations represent the same line, meaning every point on that line is a solution to the system. Therefore, there are infinitely many solutions.
A system of linear equations determines a line on the xy-plane. The solution to a linear set must satisfy all equations. The solution set is the intersection of x and y, and is either a line, a single point, or the empty set.