Yes, a vector can be represented in terms of a unit vector which is in the same direction as the vector. it will be the unit vector in the direction of the vector times the magnitude of the vector.
The zero vector is both parallel and perpendicular to any other vector. V.0 = 0 means zero vector is perpendicular to V and Vx0 = 0 means zero vector is parallel to V.
Vector spaces can be formed of vector subspaces.
Resultant vector or effective vector
Spliting up of vector into its rectangular components is called resolution of vector
Yes, a vector can be represented in terms of a unit vector which is in the same direction as the vector. it will be the unit vector in the direction of the vector times the magnitude of the vector.
NULL VECTOR::::null vector is avector of zero magnitude and arbitrary direction the sum of a vector and its negative vector is a null vector...
90 degrees
The zero vector is both parallel and perpendicular to any other vector. V.0 = 0 means zero vector is perpendicular to V and Vx0 = 0 means zero vector is parallel to V.
reverse process of vector addition is vector resolution.
Vector spaces can be formed of vector subspaces.
Resultant vector or effective vector
Spliting up of vector into its rectangular components is called resolution of vector
A null vector has no magnitude, a negative vector does have a magnitude but it is in the direction opposite to that of the reference vector.
A scalar times a vector is a vector.
Zero vector or null vector is a vector which has zero magnitude and an arbitrary direction. It is represented by . If a vector is multiplied by zero, the result is a zero vector. It is important to note that we cannot take the above result to be a number, the result has to be a vector and here lies the importance of the zero or null vector. The physical meaning of can be understood from the following examples. The position vector of the origin of the coordinate axes is a zero vector. The displacement of a stationary particle from time t to time tl is zero. The displacement of a ball thrown up and received back by the thrower is a zero vector. The velocity vector of a stationary body is a zero vector. The acceleration vector of a body in uniform motion is a zero vector. When a zero vector is added to another vector , the result is the vector only. Similarly, when a zero vector is subtracted from a vector , the result is the vector . When a zero vector is multiplied by a non-zero scalar, the result is a zero vector.
The vector obtained by dividing a vector by its magnitude is called a unit vector. Unit vectors have a magnitude of 1 and represent only the direction of the original vector.