x+7 is greater than or equal to 2
The solution of an inequality is a set of values that satisfy the inequality condition. For example, in the inequality ( x > 3 ), the solution includes all numbers greater than 3, such as 4, 5, or any number approaching infinity. Solutions can be expressed as intervals, such as ( (3, \infty) ), or as a number line representation. These solutions help identify the range of values that make the inequality true.
Three solutions for inequality in Year 9 math include: Graphing: Plotting the inequality on a graph helps visualize the solution set, showing all the points that satisfy the inequality. Substitution: Testing specific values in the inequality can help determine if they satisfy the condition, providing a practical way to find solutions. Algebraic Manipulation: Rearranging the inequality by isolating the variable can simplify the problem and lead directly to the solution set.
The name for two inequalities written as one inequality is a "compound inequality." This format expresses relationships involving two conditions simultaneously, often using "and" or "or" to connect them. For example, the compound inequality (3 < x < 7) combines two inequalities, (3 < x) and (x < 7).
To determine a solution to an inequality, you need to specify the inequality itself. Solutions vary depending on the inequality's form, such as linear (e.g., (x > 3)) or quadratic (e.g., (x^2 < 4)). Once the inequality is provided, you can identify specific numbers that satisfy it. Please provide the inequality for a precise solution.
In mathematics, the solution of an inequality refers to the set of values that satisfy the inequality condition. For example, in the inequality (x > 3), any number greater than 3 is considered a solution. These solutions can often be represented on a number line or in interval notation, illustrating all possible values that fulfill the inequality. Essentially, it identifies the range of values for which the inequality holds true.
x - 3 is not an inequality.
In solving an inequality you generally use the same methods as for solving an equation. The main difference is that when you multiply or divide each side by a negative, you have to switch the direction of the inequality sign. The solution to an equation is often a single value, but the solution to an inequality is usually an infinite set of numbers, such as x>3.
The question cannot be answered since it contains no inequality.
The solution of an inequality is a set of values that satisfy the inequality condition. For example, in the inequality ( x > 3 ), the solution includes all numbers greater than 3, such as 4, 5, or any number approaching infinity. Solutions can be expressed as intervals, such as ( (3, \infty) ), or as a number line representation. These solutions help identify the range of values that make the inequality true.
You solve an inequality in the same way as you would solve an equality (equation). The only difference is that if you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality sign. Thus, if you have -3x < 9 to find x, you need to divide by -3. That is a negative number so -3x/(-3) > 9/(-3) reverse inequality x > -3
Three solutions for inequality in Year 9 math include: Graphing: Plotting the inequality on a graph helps visualize the solution set, showing all the points that satisfy the inequality. Substitution: Testing specific values in the inequality can help determine if they satisfy the condition, providing a practical way to find solutions. Algebraic Manipulation: Rearranging the inequality by isolating the variable can simplify the problem and lead directly to the solution set.
-3x + 7 < -3 -3x < 4 x > -(4/3) ■
The name for two inequalities written as one inequality is a "compound inequality." This format expresses relationships involving two conditions simultaneously, often using "and" or "or" to connect them. For example, the compound inequality (3 < x < 7) combines two inequalities, (3 < x) and (x < 7).
To determine a solution to an inequality, you need to specify the inequality itself. Solutions vary depending on the inequality's form, such as linear (e.g., (x > 3)) or quadratic (e.g., (x^2 < 4)). Once the inequality is provided, you can identify specific numbers that satisfy it. Please provide the inequality for a precise solution.
In mathematics, the solution of an inequality refers to the set of values that satisfy the inequality condition. For example, in the inequality (x > 3), any number greater than 3 is considered a solution. These solutions can often be represented on a number line or in interval notation, illustrating all possible values that fulfill the inequality. Essentially, it identifies the range of values for which the inequality holds true.
The inequality sign changes direction. So 2<3 Multiply by -2 and you get -4>-6 (similarly with division).
For the same reason you must flip it when you multiply by a negative number. An example should suffice. 2 < 3 If you multiply by -1, without switching the sign, you get: -2 < -3, which is wrong. Actually, -2 > -3. Look at a number line if you are not sure about this - numbers to the left are less than numbers further to the right. Dividing by a negative number is the same as multiplying by the reciprocal, which in this case is also negative. These signs are strictly the "Greater than" and "Less than" signs. The inequality sign is an = with a / stroke through it. If you divide an inequality by -1 it remains an inequality.