If: 3x-y = 5 then y^2 = (3x_5)^2 => 9x^2 -30x+25 If: 2x^2 + y^2 = 129 then y^2 = 129-2x^2 So: 9x^2 -30x+25 = 129-2x^2 Transposing terms: 11x^2 -30x -104 = 0 Factorizing the above: (11x-52)(x+2) = 0 meaning x = 52/11 or x = -2 By substituting x into the original equation intersections are at: (52/11, 101/11) and (-2, -11)
10%x = x/10. 129/10 = 12.9
129 x .22 = 28.38
If: 3x-y = 5 and 2x2+y2 = 129 Then: 3x-y = 5 => y = 3x-5 And so: 2x2+(3x-5)2 = 129 => 11x2-30x-104 = 0 Using the quadratic equation formula: x = 52/11 and x = -2 By substitution points of intersection are: (52/11, 101/11) and (-2, -11)
2/3 x 129 = 86
1, 3, 43, 129: (1 x 129, 3 x 43, 43 x 3, 129 x 1)
If: 3x-y = 5 then y^2 = (3x_5)^2 => 9x^2 -30x+25 If: 2x^2 + y^2 = 129 then y^2 = 129-2x^2 So: 9x^2 -30x+25 = 129-2x^2 Transposing terms: 11x^2 -30x -104 = 0 Factorizing the above: (11x-52)(x+2) = 0 meaning x = 52/11 or x = -2 By substituting x into the original equation intersections are at: (52/11, 101/11) and (-2, -11)
129 - 30% = 129 x (1 - (30/100)) = 129 x 0.7 = 90.3
1 x 129, 3 x 43.
1 x 52 = 52 2 x 52 = 104 3 x 52 = 156 4 x 52 = 208 5 x 52 = 260 6 x 52 = 312 7 x 52 = 364 8 x 52 = 416 9 x 52 = 468 10 x 52 = 520 11 x 52 = 572 12 x 52 = 624
10%x = x/10. 129/10 = 12.9
The points of contact are the solutions to the simultaneous equations:3x - y = 5 → y = 3x - 52x² + y² = 129Substitute for y in (2) using (1) gives: 2x² + (3x - 5)² = 129→ 2x² + 9x² - 30x + 25 - 129 = 0→ 11x² - 30x - 104 = 0→ (11x - 52)(x + 2) = 0So11x - 52 = 0→ x = 52/11→ y = 3×52/11 - 5 = 101/11orx + 2 = 0→ x = -2→ y = 3×(-2) - 5 = -11→ the points of contact are (-2, -11) and (52/11, 101/11) ≈ (4.72, 9.18)
If: 3x-y = 5 Then: y^2 = 9x^2 -30x +25 If: 2x^2 +y^2 = 129 Then: 2x^2 +9x^2 -30x +25 = 129 Transposing terms: 11x^2 -30x -104 = 0 Factorizing the above: (11x-52)(x+2) = 0 meaning x = 52/11 or x = -2 Therefore by substitution points of intersection are at: (52/11, 101/11) and (-2, -11)
The simultaneous equations are: 3x -y = 5 and 2x^2 +y^2 = 129 If: 3x^2 -y = 5 then y^2 = 9x^2 -30x +25 If: 2x^2 +y^2 = 129 then y^2 = 129 -2x^2 So: 9x^2 -30x +25 = 129 -2x^2 Transposing terms: 11x^2 -30x -104 = 0 Factorizing the above: (11x -52)(x +2) = 0 meaning x = 52/11 or x = -2 By substituting the above values into the original equations the points of contact occur at (52/11, 101/11) and ( (-2, -11)
1.29 x 102 is.
129 x 18 = 2,322
129 = 3 x 43