To consider the difference between straight binary and BCD, the binary numbers need to be split up into 4 binary digits (bits) starting from the units. In 4 bits there are 16 possible values from 0000 to 1111 (0 to 15). In straight binary all of these possible combinations are used, thus: 4 bits can represent the decimal numbers 0-15 8 bits can represent the decimal numbers 0-255 12 bits can represent the decimal numbers 0-4095 16 bits can represent the decimal numbers 0-65535 etc In arithmetic, all combinations of bits are used, thus: 0000 1001 + 0001 = 0000 1010 In BCD or Binary Coded Decimal, only the representations of the decimal numbers 0-9 are used (that is 0000 to 1001 in binary), and the 4-bits (nybbles) are read as decimal digits, thus: 4 bits can represent the decimal digits 0-9 8 bits can represent the decimal digits 0-99 12 bits can represent the decimal digits 0-999 16 bits can represent the decimal digits 0-9999 In arithmetic, only the representations of decimal numbers are used, thus: 0000 1001 + 0001 = 0001 0000 When BCD is used each half of a byte is read directly as a decimal digit. BCD is obviously inefficient as storage (for large numbers) as each nybble is only holding 3/8 of the possible numbers, however, it is sometimes easier and quicker to work with decimal digits (for example when there is lots of display of counting numbers to do there is less binary to decimal conversion needing to be done).
14
12 in binary would be 1100
0.0896
There are 12 inches in one foot. Therefore, 134 inches is equal to 134/12 = 11.16 recurring (that is, 11.166666...) feet or 11 feet 2 inches.
Four bits are required to write '12' as a binary number.(12)10 = ( 1 1 0 0 )2
for a four bit pattern, its 1100....8 bits 00001100
The CRC remainder must be 12 bits long It can detect all burst errors at or below 12 bits in length
design a one bit slice of the adder subtractor and iterate it through all 12 bits.
The answer to your question is 4095 in decimalIn binary 111111111111If your having trouble with binary here is a link that will help understand it all a bit better.http://knol.google.com/k/zach-bacon/counting-in-binary-for-beginners/11ezkn0ytzmdj/3#
To consider the difference between straight binary and BCD, the binary numbers need to be split up into 4 binary digits (bits) starting from the units. In 4 bits there are 16 possible values from 0000 to 1111 (0 to 15). In straight binary all of these possible combinations are used, thus: 4 bits can represent the decimal numbers 0-15 8 bits can represent the decimal numbers 0-255 12 bits can represent the decimal numbers 0-4095 16 bits can represent the decimal numbers 0-65535 etc In arithmetic, all combinations of bits are used, thus: 0000 1001 + 0001 = 0000 1010 In BCD or Binary Coded Decimal, only the representations of the decimal numbers 0-9 are used (that is 0000 to 1001 in binary), and the 4-bits (nybbles) are read as decimal digits, thus: 4 bits can represent the decimal digits 0-9 8 bits can represent the decimal digits 0-99 12 bits can represent the decimal digits 0-999 16 bits can represent the decimal digits 0-9999 In arithmetic, only the representations of decimal numbers are used, thus: 0000 1001 + 0001 = 0001 0000 When BCD is used each half of a byte is read directly as a decimal digit. BCD is obviously inefficient as storage (for large numbers) as each nybble is only holding 3/8 of the possible numbers, however, it is sometimes easier and quicker to work with decimal digits (for example when there is lots of display of counting numbers to do there is less binary to decimal conversion needing to be done).
14
12 in binary would be 1100
0.0896
12 bit binary of -64 = -52
0xc = 1100 Hexadecimal digits use exactly 4 binary digits (bits). The 0x0 to 0xf of hexadecimal map to 0000 to 1111 of binary. Thinking of the hexadecimal digits as decimal numbers, ie 0x0 to 0x9 are 0 to 9 and 0xa to 0xf are 10 to 15, helps with the conversion to binary: 0xc is 12 decimal which is 8 + 4 → 1100 in [4 bit] binary.
12 bits = 1-1/2 bytes.