poihugyftdrsykdtulfiyg8ypt7r6leu5kyjasrkdtou
It is an arithmetic sequence for which the index goes on and on (and on).
That's an arithmetic sequence.
You didn't say the series (I prefer to use the word sequence) of even numbers are consecutive even numbers, or even more generally an arithmetic sequence. If we are not given any information about the sequence other than that each member happens to be even, there is no formula for that other than the fact that you can factor out the 2 from each member and add up the halves, then multiply by 2: 2a + 2b + 2c = 2(a + b + c). If the even numbers are an arithmetic sequence, you can use the formula for the sum of an arithmetic sequence. Similarly if they are a geometric sequence.
From the information given, all that can be said is that it will be a negative number.
Arithmetic
-161.
When quantities in a given sequence increase or decrease by a common difference,it is called to be in arithmetic progression.
The answer depends on what the explicit rule is!
origin of arithmetic sequence
The given sequence (7, 14, 21, 28, 35,....) is an arithmetic sequence where each term increases by 7. The nth term of the given sequence is 7n
It is an arithmetic sequence for which the index goes on and on (and on).
An arithmetic sequence is a list of numbers which follow a rule. A series is the sum of a sequence of numbers.
That's an arithmetic sequence.
You didn't say the series (I prefer to use the word sequence) of even numbers are consecutive even numbers, or even more generally an arithmetic sequence. If we are not given any information about the sequence other than that each member happens to be even, there is no formula for that other than the fact that you can factor out the 2 from each member and add up the halves, then multiply by 2: 2a + 2b + 2c = 2(a + b + c). If the even numbers are an arithmetic sequence, you can use the formula for the sum of an arithmetic sequence. Similarly if they are a geometric sequence.
From the information given, all that can be said is that it will be a negative number.
The mean of the numbers a1, a2, a3, ..., an is equal to (a1 + a2 + a3 +... + an)/n. This number is also called the average or the arithmetic mean.The geometric mean of the positive numbers a1, a2, a3, ... an is the n-th roots of [(a1)(a2)(a3)...(an)]Given two positive numbers a and b, suppose that a< b. The arithmetic mean, m, is then equal to (1/2)(a + b), and, a, m, b is an arithmetic sequence. The geometric mean, g, is the square root of ab, and, a, g, b is a geometric sequence. For example, the arithmetic mean of 4 and 25 is 14.5 [(1/2)(4 + 25)], and arithmetic sequence is 4, 14.5, 25. The geometric mean of 4 and 25 is 10 (the square root of 100), and the geometric sequence is 4, 10, 25.It is a theorem of elementary algebra that, for any positive numbers a1, a2, a3, ..., an, the arithmetic mean is greater than or equal to the geometric mean. That is:(1/n)(a1, a2, a3, ..., an) ≥ n-th roots of [(a1)(a2)(a3)...(an)]
It is the start of an arithmetic sequence.