It would always be a natural number.
Chat with our AI personalities
There are an infinite number of prime numbers. The first to have proven this was Euclid. Here are the general lines of his proof:Suppose there are n prime numbers overall.Let N be a common multiple of all these primes.Is N+1 prime? If it is, we have found a new prime.Suppose N+1 is not prime. Thus, there exists a prime number p which divides N+1 evenly. If p is one of the primes dividing N, it also divides 1 evenly, which is impossible. Thus, p is not one of the n primes, and we found a new prime.(see the related link for a list of the first 500 prime numbers)
Perfect numbers cannot be prime numbers. Here's why:A number N is perfect if σ(N) = 2N (σ is the sum of divisors function). If there is a prime p that is a perfect number, then σ(p) = 2p. However, the only factors of p are 1 and p, so σ(p) is also equal to p+1. If 2p = p+1, then p=1, which is not prime, and 1 is defined to have only one factor, 1.
These are prime numbers of the form p and p+2.
Formally, a number n, has an inverse mod p only if p is prime. The inverse of n, mod p, is one of the numbers {0, 1, 2, ... , k-1} such that n*(p-1) = 1 mod p If p is not a prime then: if n is a factor of p then there is no such "inverse"; and if n is not a factor of p then there may be several possible "inverses".
It would be the same number either way because its addition.