All Euclid geometry can be translated to Analytic Geom. And of course, the opposite too. In fact, any geometry can be translated to Analytic Geom.
There are two non-Euclidean geometries: hyperbolic geometry and ellptic geometry.
No, both spherical and hyperbolic geometries are noneuclidian.
No. Spherical geometry did not disprove Euclidean geometry but demonstrated that more than one geometries were possible. Different circumstances required different geometries. Similarly hyperbolic geometry did not disprove either of the others.
Pi is only constant in Euclidean Geometry, it is not the same in other Geometries. In the non-Euclidean geometry that Relativity theory uses the difference between PiE and PiNE is extremely small, approaching zero.
Euclidean geometry is the traditional geometry: it is the geometry of a plane surface, as developed by Euclid. Among other things, it is based on Euclid's parallel postulate which said (in effect) that given a line and a point outside that line there could only be one line through that point that was parallel to the given line. It has since been discovered that both alternatives to that postulate - that there are many such lines possible and that there are none - give rise to consistent geometries. These are non-Euclidean geometries.
There are two non-Euclidean geometries: hyperbolic geometry and ellptic geometry.
The 2 types of non-Euclidean geometries are hyperbolic geometry and ellptic geometry.
Answer The two commonly mentioned non-Euclidean geometries are hyperbolic geometry and elliptic geometry. If one takes "non-Euclidean geometry" to mean a geometry satisfying all of Euclid's postulates but the parallel postulate, these are the two possible geometries.
No, both spherical and hyperbolic geometries are noneuclidian.
No. Spherical geometry did not disprove Euclidean geometry but demonstrated that more than one geometries were possible. Different circumstances required different geometries. Similarly hyperbolic geometry did not disprove either of the others.
G. J. Schellekens has written: 'Geometries and linear groups' -- subject(s): Analytic Geometry, Geometry, Analytic
No. Non-Euclidean geometries usually start with the axiom that Euclid's parallel postulate is not true. This postulate can be shown to be equivalent to the statement that the internal angles of a traingle sum to 180 degrees. Thus, non-Euclidean geometries are based on the proposition that is equivalent to saying that the angles do not add up to 180 degrees.
A Plane triangle cannot have parallel sides. A triangle on a sphere, represented in Mercator projection may do so, but that still does not make it so, for that is in spherical geometry. And there are other geometries than Euclidean (plane). Hyperbolic Geometry and Elliptic Geometry are the names of another two. These geometries are consistent within themselves, but some of the theorems in Euclidean geometry have different answers in these alternate geometries.
Not in Euclidean geometry, but in other geometries such lines are possible.
Marvin J. Greenberg has written: 'Euclidean and non-Euclidean geometries' -- subject(s): Geometry, Geometry, Non-Euclidean, History 'Lectures on algebraic topology' -- subject(s): Algebraic topology
Pi is only constant in Euclidean Geometry, it is not the same in other Geometries. In the non-Euclidean geometry that Relativity theory uses the difference between PiE and PiNE is extremely small, approaching zero.
Archimedes - Euclidean geometry Pierre Ossian Bonnet - differential geometry Brahmagupta - Euclidean geometry, cyclic quadrilaterals Raoul Bricard - descriptive geometry Henri Brocard - Brocard points.. Giovanni Ceva - Euclidean geometry Shiing-Shen Chern - differential geometry René Descartes - invented the methodology analytic geometry Joseph Diaz Gergonne - projective geometry; Gergonne point Girard Desargues - projective geometry; Desargues' theorem Eratosthenes - Euclidean geometry Euclid - Elements, Euclidean geometry Leonhard Euler - Euler's Law Katyayana - Euclidean geometry Nikolai Ivanovich Lobachevsky - non-Euclidean geometry Omar Khayyam - algebraic geometry, conic sections Blaise Pascal - projective geometry Pappus of Alexandria - Euclidean geometry, projective geometry Pythagoras - Euclidean geometry Bernhard Riemann - non-Euclidean geometry Giovanni Gerolamo Saccheri - non-Euclidean geometry Oswald Veblen - projective geometry, differential geometry