No, both spherical and hyperbolic geometries are noneuclidian.
i have no idea lol
yes
False.
No. Spherical geometry did not disprove Euclidean geometry but demonstrated that more than one geometries were possible. Different circumstances required different geometries. Similarly hyperbolic geometry did not disprove either of the others.
Lobachevsky's work did not create spherical geometry; rather, he is known for developing hyperbolic geometry, which deviates from Euclidean principles. Spherical geometry, on the other hand, is based on the properties of figures on the surface of a sphere and includes concepts such as great circles and the sum of angles in a triangle exceeding 180 degrees. Both geometries are non-Euclidean, but they arise from different fundamental assumptions about space. Lobachevsky's contributions helped to expand the understanding of non-Euclidean geometries, including both hyperbolic and spherical forms.
Spherical
Geometry that is not on a plane, like spherical geometry
Geometry that is not on a plane, like spherical geometry
No.
i have no idea lol
In Euclidean geometry, parallels never meet. In other geometry, such as spherical geometry, this is not true.
yes
False.
No. Spherical geometry did not disprove Euclidean geometry but demonstrated that more than one geometries were possible. Different circumstances required different geometries. Similarly hyperbolic geometry did not disprove either of the others.
In Euclidean geometry, yes.In Euclidean geometry, yes.In Euclidean geometry, yes.In Euclidean geometry, yes.
One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.
One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.