The good real life example is the box of toys and the box of food. Imagine letting A be the box of toys and B be the box of food. Then, the intersection of those sets is empty.
The example of disjoint set in mathematics is as followed:
Let A = {1,2} and B = {3}. Then, A ∩ B = ∅
Chat with our AI personalities
Two sets are said to be "disjoint" if they have no common element - their intersection is the empty set. As far as I know, "joint" is NOT used in the sense of the opposite of disjoint, i.e., "not disjoint".
Two events are disjoint if they cannot occur together. In set terms, their intersection is a null set.
ExplanationFormally, two sets A and B are disjoint if their intersection is the empty set, i.e. if This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint andSets that are not the same.
No, only if both sets are empty. The intersection of disjoint sets is always empty.
Disjoint sets are sets whose intersection, denoted by an inverted U), produces the null or the empty set. If a set is not disjoint, then it is called joint. [ex. M= {1,2,A} N = {4,5,B}. S intersection D is a null set, so M and N are disjoint sets.