The good real life example is the box of toys and the box of food. Imagine letting A be the box of toys and B be the box of food. Then, the intersection of those sets is empty.
The example of disjoint set in mathematics is as followed:
Let A = {1,2} and B = {3}. Then, A ∩ B = ∅
A set that has no elements in common with another set is called a "disjoint set." When two sets are disjoint, their intersection is empty, meaning there are no shared elements between them. For example, the sets {1, 2, 3} and {4, 5, 6} are disjoint sets.
An example of disjoint sets is the collection of even numbers and odd numbers. The set of even numbers, such as {2, 4, 6, 8}, and the set of odd numbers, such as {1, 3, 5, 7}, do not share any common elements. Therefore, they are disjoint, meaning there is no overlap between the two sets.
Two sets are said to be "disjoint" if they have no common element - their intersection is the empty set. As far as I know, "joint" is NOT used in the sense of the opposite of disjoint, i.e., "not disjoint".
Two events are disjoint if they cannot occur together. In set terms, their intersection is a null set.
ExplanationFormally, two sets A and B are disjoint if their intersection is the empty set, i.e. if This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint andSets that are not the same.
Sets are not disjants, they are disjoint. And two sets are disjoint if they have nothing in common. For example, the set {1,3,5} has nothing in common with the set {2,4,6}. So they are disjoint.
An example of disjoint sets is the collection of even numbers and odd numbers. The set of even numbers, such as {2, 4, 6, 8}, and the set of odd numbers, such as {1, 3, 5, 7}, do not share any common elements. Therefore, they are disjoint, meaning there is no overlap between the two sets.
Two sets are said to be "disjoint" if they have no common element - their intersection is the empty set. As far as I know, "joint" is NOT used in the sense of the opposite of disjoint, i.e., "not disjoint".
Not necessarily. For a counterexample, A and C could be the same set.
ExplanationFormally, two sets A and B are disjoint if their intersection is the empty set, i.e. if This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint andSets that are not the same.
Two events are disjoint if they cannot occur together. In set terms, their intersection is a null set.
Two sets are said to be "disjoint" if they have no common element - their intersection is the empty set. As far as I know, "joint" is NOT used in the sense of the opposite of disjoint, i.e., "not disjoint".
The difference between joint sets and disjoint sets is the number of elements in common. A disjoint set, in math, does not any elements in common. A joint set must have at least one number in common.
they dont share common elements...thats why their disjoint..g??
Disjoint sets are sets whose intersection is the empty set. That is, they have no elements in common. Examples: {Odd integers} and {Multiples of 6}. {People living in my street} and {Objects made of glass}.
ExplanationFormally, two sets A and B are disjoint if their intersection is the empty set, i.e. if This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint andSets that are not the same.
Joint sets:Joint sets are those which have common elements Disjoint sets : A pair of sets is said to be disjoint if their intersection is the empty set. That is to say, if they share no elements. All of the usual operations can be performed on disjoint sets, so long as the operation makes sense. (For example, taking the complement of one with respect to the other could pose problems.)