Parametric.
Parametric statistical tests assume that your data are normally distributed (follow a classic bell-shaped curve). An example of a parametric statistical test is the Student's t-test.Non-parametric tests make no such assumption. An example of a non-parametric statistical test is the Sign Test.
Parametric tests assume that your data are normally distributed (i.e. follow a classic bell-shaped "Gaussian" curve). Non-parametric tests make no assumption about the shape of the distribution.
If the distribution is parametric then yes.
1. A nonparametric statistic has no inference 2. A nonparametric statistic has no standard error 3. A nonparametric statistic is an element in a base population (universe of possibilities) where every possible event in the population is known and can be characterized * * * * * That is utter rubbish and a totally irresponsible answer. In parametric statistics, the variable of interest is distributed according to some distribution that is determined by a small number of parameters. In non-parametric statistics there is no underlying parametric distribution. With non-parametric data you can compare between two (or more) possible distributions (goodness-of-fit), test for correlation between variables. Some test, such as the Student's t, chi-square are applicable for parametric as well as non-parametric statistics. I have, therefore, no idea where the previous answerer got his/her information from!
Parametric.
Parametric for one set?! Yeah
Parametric statistical tests assume that your data are normally distributed (follow a classic bell-shaped curve). An example of a parametric statistical test is the Student's t-test.Non-parametric tests make no such assumption. An example of a non-parametric statistical test is the Sign Test.
Binomial is a non- parametric test. Since this binomial test of significance does not involve any parameter and therefore is non parametric in nature, the assumption that is made about the distribution in the parametric test is therefore not assumed in the binomial test of significance. In the binomial test of significance, it is assumed that the sample that has been drawn from some population is done by the process of random sampling. The sample on which the binomial test of significance is conducted by the researcher is therefore a random sample.
Parametric tests assume that your data are normally distributed (i.e. follow a classic bell-shaped "Gaussian" curve). Non-parametric tests make no assumption about the shape of the distribution.
If the distribution is parametric then yes.
bota !
1. A nonparametric statistic has no inference 2. A nonparametric statistic has no standard error 3. A nonparametric statistic is an element in a base population (universe of possibilities) where every possible event in the population is known and can be characterized * * * * * That is utter rubbish and a totally irresponsible answer. In parametric statistics, the variable of interest is distributed according to some distribution that is determined by a small number of parameters. In non-parametric statistics there is no underlying parametric distribution. With non-parametric data you can compare between two (or more) possible distributions (goodness-of-fit), test for correlation between variables. Some test, such as the Student's t, chi-square are applicable for parametric as well as non-parametric statistics. I have, therefore, no idea where the previous answerer got his/her information from!
yes
The Kruskal-Wallis test should be used when you have three or more independent groups and want to compare the medians of non-normally distributed data. It is a non-parametric alternative to the parametric ANOVA test and can be applied when the assumptions for ANOVA, such as normality and homogeneity of variances, are violated. The Kruskal-Wallis test is particularly useful when working with ordinal or skewed interval/ratio data.
log 10 or square root your non parametric values
Parametric are the usual tests you learn about. Non-parametric tests are used when something is very "wrong" with your data--usually that they are very non-normally distributed, or N is very small. There are a variety of ways of approaching non-parametric statistics; often they involve either rank-ordering the data, or "Monte-Carlo" random sampling or exhaustive sampling from the data set. The whole idea with non-parametrics is that since you can't assume that the usual distribution holds (e.g., the X² distribution for the X² test, normal distribution for t-test, etc.), you use the calculated statistic but apply a new test to it based only on the data set itself.